Towards a Software Pillar for Open Science

bringing software to the limelight

Roberto Di Cosmo

Director, Software Heritage
Inria and Université de Paris Cité

May 2022
Outline

1. Software and Open Science
2. Focus on ARDC and infrastructures
3. Action!
4. Call to action
5. Policy news
Software is a pillar of Open Science

Software powers modern research

[…] software […] essential in their fields.

Top 100 papers (Nature, 2014)

Sometimes, if you don’t have the software, you don’t have the data

Christine Borgman, Paris, 2018

Nota Bene

software may be a tool, a research outcome and a research object

access to the source code is essential!

Preserving (the history of) source code is necessary for reproducibility

Missing pillar: software (source code)

The links in the picture are important
Software Source Code is Precious Knowledge

Harold Abelson, Structure and Interpretation of Computer Programs (1st ed.) 1985

“Programs must be written for people to read, and only incidentally for machines to execute.”

Apollo 11 source code (excerpt)

<table>
<thead>
<tr>
<th>P63SP0T3</th>
<th>CA</th>
<th>BIT6</th>
<th># IS THE LR ANTENNA IN POSITION 1 YET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EXTEND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAND</td>
<td>CHAN33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXTEND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BZF</td>
<td>P63SP0T4</td>
<td># BRANCH IF ANTENNA ALREADY IN POSITION 1</td>
<td></td>
</tr>
<tr>
<td>CAF</td>
<td>CODE508</td>
<td># ASTRONAUT: PLEASE CRANK THE</td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>BANKCALL</td>
<td># SILLY THING AROUND</td>
<td></td>
</tr>
<tr>
<td>CADR</td>
<td>GOPERF</td>
<td># TERMINATE</td>
<td></td>
</tr>
<tr>
<td>TCF</td>
<td>GOTOP000</td>
<td># PROCEED SEE IF HE'S LYING</td>
<td></td>
</tr>
<tr>
<td>TCF</td>
<td>P63SP0T3</td>
<td># PROCEED</td>
<td></td>
</tr>
</tbody>
</table>

Quake III source code (excerpt)

```c
float Q_rsqrt(float number)
{
    long i;
    float x2, y;
    const float threehalves = 1.5F;
    x2 = number * 0.5F;
    y = number;
    i = *(long*)&y; // evil floating point bit level hacking
    i = 0x5f3759df - (i >> 1); // what the fuck?
    y = *(float*)&i;
    y = y * (threehalves - (x2 * y * y)); // 1st iteration
    // y = y * (threehalves - (x2 * y * y)); // 2nd iteration, this can be removed
    return y;
}
```

Len Shustek, Computer History Museum 2006

“Source code provides a view into the mind of the designer.”
Source code is *special* (software is *not* data)

Software evolves over time
- projects may last decades
- the *development history* is key to its *understanding*

Complexity
- *millions* of lines of code
- large *web of dependencies*
 - easy to break, difficult to maintain
 - *research software* a thin top layer
- sophisticated *developer communities*

The human side
- design, algorithm, code, test, documentation, community, funding
- and so many more facets …
A plurality of needs

Researchers
- archive and reference software used in articles
- find useful software
- get credit for developed software
- verify, reproduce, improve results

Laboratories/teams
- track software contributions
- produce reports
- maintain web page

Research Organization
- know its software assets
- technology transfer
- impact metrics
- funding strategy
- career evaluation
<table>
<thead>
<tr>
<th>What is at stake: ARDC</th>
<th>in increasing order of difficulty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archive</td>
<td></td>
</tr>
<tr>
<td>Research software artifacts must be properly archived</td>
<td>make sure we can retrieve them (reproducibility)</td>
</tr>
<tr>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Research software artifacts must be properly referenced</td>
<td>make sure we can identify them (reproducibility)</td>
</tr>
<tr>
<td>Describe</td>
<td></td>
</tr>
<tr>
<td>Research software artifacts must be properly described</td>
<td>make it easy to discover and reuse them (visibility)</td>
</tr>
<tr>
<td>Cite/Credit</td>
<td></td>
</tr>
<tr>
<td>Research software artifacts must be properly cited (not the same as referenced!)</td>
<td>to give credit to authors (evaluation!</td>
</tr>
</tbody>
</table>
1. Software and Open Science
2. Focus on ARDC and infrastructures
3. Action!
4. Call to action
5. Policy news
Forges are *not* archives!

2015: the first big bad news

Google Code and Gitorious.org shutdown: ~1M endangered repositories
- broken links in the web of knowledge (my papers too)

2019: big bad news keep coming in

- summer 2019: BitBucket announces Mercurial VCS sunset
- july 2020: BitBucket erases 250.000+ repositories (including research software)

2021: … in Academia too

- october 2021: Inria’s old gforge is unplugged
 - breaks the build chain of the OCaml package manager (Opam)

Bottomline

we need a universal archive of software source code: now we have one!
Collect, preserve and share all software source code
Preserving our heritage, enabling better software and better science for all

Reference catalog
find and reference all software source code

Universal archive
preserve all software source code

Research infrastructure
enable analysis of all software source code
The largest software archive, a shared infrastructure

Software Heritage

- Source files: 12,032,627,304
- Commits: 2,536,918,821
- Projects: 173,242,749
- Directories: 9,946,192,395
- Authors: 47,334,620
- Releases: 31,763,605
An international, non profit initiative built for the long term

Sharing the vision

Donors, members, sponsors

And many more ...

www.softwareheritage.org/support/testimonials
Addressing the four needs (see ICMS 2020 for details)

Archive (12B+ files, 170M+ projects)

- save.softwareheritage.org
- deposit.softwareheritage.org

Reference (20 billion SWHIDs)

Intrinsic, decentralised, cryptographically strong identifiers, SWHIDs

- create SWHID
- SWHID ID
- SWHID prefix
- SWHID object
- SWHID metric
- SWHID revision
- SWHID content

Now supported in SPDX 2.2, Wikidata etc.

Describe

- **Intrinsic metadata** from source code
- Contributed the Codemeta generator

Cite/Credit

- Contributed **software citation** style
 - biblatex-software, v 1.2-2 now on CTAN

R. Di Cosmo roberto@dicosmo.org (CC-BY 4.0)
1. Software and Open Science
2. Focus on ARDC and infrastructures
3. Action!
4. Call to action
5. Policy news
Best practices for ARDC available today!

Archiving and referencing
For all source code used in research (yes, even small scripts!)
- ensure it is archived in Software Heritage (see save code now)
- get the proper SWHID for your software (see detailed HOWTO)
- add it to research articles for reproducibility (see detailed HOWTO)

Describing and Citing/Crediting
For software you want to put forward (mention in your CV, reports, etc., get citations and credit for it), do the following extra steps:
- add codemeta.json with description (see the codemeta generator)
- reference in the HAL portal (french partners, see online HAL documentation)
- cite software using the biblatex-software package (in CTAN and TeXLive)
Demo time: a walkthrough

- Browse the archive
- Trigger archival of your preferred software in a breeze
- Get and use SWHIDs (full specification available online)
- Using the biblatex-software package from CTAN
- Example in a journal: an article from IPOL
- Example with Parmap: development on Github, archive in SWH, curated deposit in HAL
- Curated deposit in SWH via HAL, see for example: LinBox, SLALOM, Givaro, NS2DDV, SumGra, Coq proof, …
- Extracting all the software products for Inria, for CNRS, for LIRMM or for Rémi Gribonval using HalTools
Overview of the Software Heritage / HAL synergy

For italian colleagues: compare the HAL example above with an example from IRIS
Growing adoption of SWH in Academia (selection)

HAL software curated deposit workflow

Curated Archiving of Research Software Artifacts
International Journal of Digital Curation, 2020

Reference archive for swmath.org

See code links, e.g. SemiPar package

IPOL (image processing)
- archive (deposit)
- reference
- BibLaTeX

eLife (life sciences)
- archive (save code now)
- reference

JTCAM (mechanics)
- instructions for authors
- biblatex-software in journal \LaTeX\ class

Policy: France

National Plan for Open Science

Policy: Europe

EOSC SIRS report
- SWHIDs
- archive

Guidelines

- summary
- ICMS 2020

1. Prepare your public repository
 - README, AUTHORS & LICENSE files

2. Save your code
 - http://save.softwareheritage.org/

3. Reference your work
 - (full repository, specific version or code fragment)
Recent preservation news

- summer 2019: BitBucket announce Mercurial VCS phase out
- fall 2019: Software Heritage teams up with Octobus (funded by NLNet, thanks!)
- july 2020: BitBucket erases 250,000+ repositories
- august 2020: bitbucket-archive.softwareheritage.org is live
- 2021: all this is ingested in archive.softwareheritage.org

... preserving the web of knowledge

Bottomline

explicit deposit is important, …

… and we must promote it…

… but will never be enough.

(think also of all software dependencies!)
Outline

1. Software and Open Science
2. Focus on ARDC and infrastructures
3. Action!
4. Call to action
5. Policy news
Let’s foster adoption

Train students and colleagues to **archive and reference relevant source code**

- full details in the **ICMS 2020** article
- short operational **HOWTO online**
- french connection: deposit in HAL
- see the following presentation

Engage conferences, journals, learned societies to use **Software Heritage and SWHIDs**

APIs for **save code now** and **deposit** are available to integrate with

- Research Articles
- Artifact Evaluation Committees
- Badging initiatives

Help grow and structure the community

- Promote the **ambassador program**
- Encourage our institutions to
 - include Software Heritage in their Open Science policy
 - become **member/sponsor**
 - build a Software Heritage mirror (see ENEA)
1. Software and Open Science
2. Focus on ARDC and infrastructures
3. Action!
4. Call to action
5. Policy news
The Paris Call on Software Source code (2019, UNESCO)

UNESCO, Inria, Software Heritage invite 40 international experts to meet in Paris

The call is published on Feb 2019

“[We call to] promote software development as a valuable research activity, and research software as a key enabler for Open Science/Open Research, sharing good practices and recognising in the careers of academics their contributions to high quality software development, in all their forms”

Open Source for Open Science

"The source code must be included in the software release and made available on openly accessible repositories and the chosen license must allow modifications, derivative works and sharing under equal or compatible open terms and conditions"

Infrastructures

"Open science infrastructures should be organized and financed upon an essentially not-for-profit and long-term vision, which enhance open science practices and guarantee permanent and unrestricted access to all, to the largest extent possible."
Important *policy tool* in Open Science (Dec 2020)

3 archives, 3 open access publishers, 3 aggregators
- recommendations
 - archive in Software Heritage, connect it with repositories, publishers and aggregators
 - use SWHID
- default to open source for research software
 "all research software should be made available under an Open Source license by default, and all deviations from this default practice should be properly motivated"
- implementation: first steps via FAIRCORE4EOSC

See https://doi.org/10.2777/28598
French National plan for Open Science, 2021-2024

2nd National Plan for Open Science (6/7/2021)

Open and promote research software source code

- actions (selection)
 - charter for research software policy
 - recognize software development (see announcement of the 2021 prize)
 - coordinate communities of practice
 - connected ecosystem of research outputs

- recommendations (selection)
 - archive in Software Heritage
 - standardise and use SWHID
 - build a national catalog of research software
 - leverage ADAC network

See official announcement

The "Collège Logiciel" of the National Committee on Open Science (CoSO) is now live!
Ongoing action in the EOSC

Task force on infrastructures for quality research software

- Foster the development and deployment of tools and services that allow researchers to properly archive, reference, describe with proper metadata, share and reuse research software.
- Improve the quality of research software, both from the technical and organizational point of view …
- Increase recognition to software developers and maintainers of research software …

See the charter of the task force.
The floor is yours

it’s a long road, but together we can make it

Questions?

References

UNESCO, *Draft recommendations on Open Science*
2021, [online]

French Ministry of Research, *Second National Plan for Open Science*
2021, [online]

EOSC SIRS Task Force, *Scholarly Infrastructures for Research Software*

R. Di Cosmo, *Archiving and Referencing Source Code with Software Heritage*
International Conference on Mathematical Software 2020 10.1007/978-3-030-52200-1_36

J.F. Abramatic, R. Di Cosmo, S. Zacchirol, *Building the Universal Archive of Source Code*
CACM, October 2018 10.1145/3183558