
Report from the Task Force on
Scholarly Infrastructures for Research Software (SIRS)

Roberto Di Cosmo

February 11th, 2021

RDA VP 17 – Software Source Code IG

Director, Software Heritage

Chair of the SIRS TF

Slides distributed under CC-BY 4.0

Introduction

 1999: DemoLinux (first live GNU/Linux distribution)

 2007: Free Software Thematic Group in Systematic

150 members, 40+ projects, 200Me

 2010: Irill, research on free software

 2015: Software Heritage

 2018: National Committee on Open Science, France

EOSC report on Scholarly Infrastructures for Research Software 2

Roberto Di Cosmo (roberto@dicosmo.org https://www.dicosmo.org)

Computer Science professor in Paris, now working at INRIA

 30 years research (Theor. CS, Programming, Software Engineering, Erdos #: 3)

 20 years Free and Open Source Software

 10 years building and directing structures for the common good

mailto:roberto@dicosmo.org
https://www.dicosmo.org/

Focus on Software Source Code

Four Pillars Archive, Reference, Describe, Credit

State of the Art
Best Practices & Open Problems

Cross Cutting Concerns

The Road ahead
Requirements & Criteria

13 Workflows / Use Cases examples

Recommendations
Standards & Tools

Policy recommendations

Long term perspectives

EOSC report on Scholarly Infrastructures for Research Software 3

Archives
HAL

Software Heritage

Zenodo

Publishers
Dagstuhl

eLife

IPOL

Aggregators
OpenAIRE

scanR

swMATH

EOSC SIRS report (12/2020) doi.org/10.2777/28598
Chair: Roberto Di Cosmo, Software Heritage

Co-Chair: José Benito Gonzalez Lopez, Zenodo

SIRS Focus: software source code
 “Source code provides a view into the mind of the designer” Len Shustek, 2006

“[…] aware of the many difficult challenges that need to be tackled when one tries to ensure that a given
executable or a full software system can be reliably run again, enabling full reproducibility of research
results, as well as of the complex organizational, economic, and strategy issues that need to be addressed
for its sustainability”

“The focus of the work of this TF is different, as we have on purpose addressed only software
source code in the world of research, for two main reasons:”

Source code is “human readable knowledge, and embodies precious technical and scientific
information that cannot be extracted from the executables, and that can be understood even
when the corresponding executable can no longer be run”

“[…] handling software source code raises for scholarly infrastructures is a significant
challenge by itself, [...] it is easier to provide actionable recommendations by focusing on this
first”

EOSC report on Scholarly Infrastructures for Research Software 4

Programs must be written for people to read, and only incidentally for machines to execute.

 Harold Abelson, Structure and Interpretation of Computer Programs (1st ed.) 1985

Programs must be written for people to read, and only incidentally for machines to execute.

 Harold Abelson, Structure and Interpretation of Computer Programs (1st ed.) 1985

 Evolves over time: projects may last decades
 development history key to its understanding

 Complex and sophisticated
 millions of lines of code

 large web of dependencies

 sophisticated developer communities

 Research software is just a thin layer on top!
 industry+communities drive standards

Software Source Code is special
 (it is not “just data”)

Project: “Inria created OCaml and Scikit-learn”

Release: “2D Voronoi Diagrams were introduced in CGAL 3.1.0”

Precise state of a project: “This result was produced using commit 0064fbd...”

Code fragment: “The core algorithm is in lines 101 to 143 of the file parmap.ml contained in
the precise state of the project corresponding to commit 0064fbd....”

Authors can have multiple roles:

 Architecture, Management, Development, Documentation, Testing, ...

Granularity, versioning, author roles...
 (there's more to this than meets the eye)

https://dx.doi.org/10.1109/MCSE.2019.2949413

Four pillars: Archive, Reference, Describe, Credit

EOSC report on Scholarly Infrastructures for Research Software 7

« the FAIR Guiding Principles for research do not fit [software source code] well, as they were not
designed for it … » (FAIR does not fit publications either...)

« We focus here on four key concrete issues that need to be tackled to make software a first-class
citizen in the scholarly world, and where scholarly infrastructures play a prominent role: »

[Archive] ensure software artifacts are not lost

[Reference] ensure software artifacts can be precisely identified

[Describe] make it easy to discover / find software artifacts

[Credit] ensure proper credit is given to authors

« Software is a hybrid object in the world research as it is equally a driving force (as a tool), a result (as proof
of the existence of a solution) and an object of study (as an artefact). » (Opportunity note, GPLO, 2019)

The EOSC SIRS Report collects the key requirements to address these issues, through and open
architecture of interconnected infrastructures.

Research Software Infrastructures: Overall Architecture

EOSC report on Scholarly Infrastructures for Research Software 9

Software Heritage connects with
the global software development
ecosystem

Scholarly ecosystem

 Aggregators collecting data from...

 Academic publishers

 Scholarly repositories

Short term recommendations

Metadata standards & tools

Generalizing the use of Persistent Identifiers (extrinsic & intrinsic)

Ensuring appropriate credit is given and measures are not misused

Strengthening interactions between archives, publishers & aggregators

Strengthen key infrastructures sustainability and governance

Identify resilient funding models

EOSC report on Scholarly Infrastructures for Research Software 10

Metadata standard(s) for interoperability

EOSC report on Scholarly Infrastructures for Research Software 11

Codemeta « extension of the schema.org standard, extensive vocabulary designed to
allow mapping other metadata vocabularies, embrionary community process »
 Vocabulary Tools

Software Package Data eXchange (SPDX) standard maintained by the Linux Foundation
 Recognized reference for the list of software licences.

Systems of Identifiers: extrinsic and intrinsic

EOSC report on Scholarly Infrastructures for Research Software 12

Extrinsic: use a register to keep the correspondence between the identifier and the
designated object

 Examples before the digital era: passport number, social security number, …

 Examples in the digital era: DNS, Handle, ARK, DOI, …

Intrinsic: intimately bound to the designated object, no need for a register, only
agreement on a standard

 Examples before the digital era: chemical notation, musical notation, …

 Examples in the digital era: cryptographic signatures, commit hashes, SWHID...

Read more at https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/

https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/

Extrinsic systems of identifiers used for software

EOSC report on Scholarly Infrastructures for Research Software 13

 Read more at https://doi.org/10.15497/RDA00053

«We recommend that an inclusive approach is explored to guarantee

 that existing well-established extrinsic identifiers are taken into account.»

Intrinsic systems of identifiers for software

EOSC report on Scholarly Infrastructures for Research Software 15

Ralph Merkle, 1987 « A digital signature
based on a conventional encryption function »

Blockchains

Distributed file systems

As of 2020
40+ million developers

140+ million repositories

SWHID: a standard for intrinsic software identifiers

EOSC report on Scholarly Infrastructures for Research Software 17

Included in SPDX 2.2 – Prefix « swh » registered with IANA – Wikipedia Property P6138

Use « SWHID intrinsic identifiers for all publicly available software source code »

Let’s try it!

https://archive.softwareheritage.org/swh:1:cnt:41ddb23118f92d7218099a5e7a990cf58f1d07fa;origin=https:/github.com/chrislgarry/Apollo-11;visit=swh:1:snp:206c27c0c031c6aac6b5fedddba8fe082dea9836;anchor=swh:1:rev:3913f198f4383d4d638c0485d6aa902ff2f35828;path=/Luminary099/BURN_BABY_BURN--MASTER_IGNITION_ROUTINE.agc;lines=64-72/

SWHID: growing adoption in scholarly publishing

EOSC report on Scholarly Infrastructures for Research Software 18

https://elifesciences.org/inside-elife/c5428dc9/elife-latest-our-commitment-to-software-preservation-and-reuse

Credit: Quality, Curation & Metrics
Quality and curation (software quality is HARD, curation of metadata is easier)

 “ensure that the peer review process also covers software source code, with
the level of evaluation most appropriate for their field”

 “develop a set of common guidelines for moderation and curation protocols”

 “development of a set of standard tools and workflows [...] to support and ease
adoption of more sophisticated levels of review, like the ones implemented by
Artifact Evaluation Committees”

Metrics

 “should be open, verifiable, and shareable”

 “not reduced to simple numeric indicators”

 “include in the conversation [...] the research community that will be directly
impacted by the creation of these metrics”

EOSC report on Scholarly Infrastructures for Research Software 19

Development of tools and connectors (selection)

Connectors: scholarly repositories ↔universal software archive

 standards exist: development, deployment and maintenance (2 years horizon)

Tools and standards: adapt publisher pipelines

 standards exist: get involved to evolve them

Converters and adaptors: ensure Codemeta can be exported and imported

 standards exist: development, deployment and maintenance (2 years horizon)

Tools: automation of source code archival and reference for publishers

 standards do not exist: two pronged approach with a 4 years timeframe

EOSC report on Scholarly Infrastructures for Research Software 20

Long term recommendations

Advanced technologies
Open plagiarism detection

Advanced search engines

Integration with publications and data

Common Infrastructures hosted by not-for-profit organizations

Open Source license by default

EOSC report on Scholarly Infrastructures for Research Software 21

 Thank you

roberto@dicosmo.org @rdicosmo https://www.softwareheritage.org @swheritage

Now it’s time to implement these recommendations!

mailto:roberto@dicosmo.org
https://www.softwareheritage.org/

