
So�ware Heritage: Our So�ware Commons, Forever.
a status update

Nicolas Dandrimont, Stefano Zacchiroli

Inria, So�ware Heritage

10 August 2017
DebConf17 — Montreal, CA

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 1 / 31

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Gory details

5 Community

6 Conclusion

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 2 / 31

So�ware source code is special

Harold Abelson, Structure and Interpretation of Computer Programs

“Programs must be wri�en for people to read, and only incidentally for machines to execute.”

�ake 2 source code (excerpt) Net. queue in Linux (excerpt)

Len Shustek, Computer History Museum

“Source code provides a view into the mind of the designer.”

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 2 / 31

Our So�ware Commons

Definition (Commons)

The commons is the cultural and natural resources accessible to all members of a
society, including natural materials such as air, water, and a habitable earth. These
resources are held in common, not owned privately. https://en.wikipedia.org/wiki/Commons

Definition (So�ware Commons)

The so�ware commons consists of all computer so�ware which is available at li�le or no
cost and which can be altered and reused with few restrictions. Thus all open source
so�ware and all free so�ware are part of the [so�ware] commons. [. . .]
https://en.wikipedia.org/wiki/Software_Commons

Source code is a precious part of our commons

are we taking care of it?

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 3 / 31

https://en.wikipedia.org/wiki/Commons
https://en.wikipedia.org/wiki/Software_Commons

Our So�ware Commons

Definition (Commons)

The commons is the cultural and natural resources accessible to all members of a
society, including natural materials such as air, water, and a habitable earth. These
resources are held in common, not owned privately. https://en.wikipedia.org/wiki/Commons

Definition (So�ware Commons)

The so�ware commons consists of all computer so�ware which is available at li�le or no
cost and which can be altered and reused with few restrictions. Thus all open source
so�ware and all free so�ware are part of the [so�ware] commons. [. . .]
https://en.wikipedia.org/wiki/Software_Commons

Source code is a precious part of our commons

are we taking care of it?

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 3 / 31

https://en.wikipedia.org/wiki/Commons
https://en.wikipedia.org/wiki/Software_Commons

So�ware is fragile

Like all digital information, FOSS is fragile

inconsiderate and/or malicious code loss (e.g., Code Spaces)

business-driven code loss (e.g., Gitorious, Google Code)

for obsolete code: physical media decay (data rot)

Where is the archive. . .
where we go if (a repository on) GitHub or GitLab.com goes away?

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 4 / 31

So�ware is fragile

Like all digital information, FOSS is fragile

inconsiderate and/or malicious code loss (e.g., Code Spaces)

business-driven code loss (e.g., Gitorious, Google Code)

for obsolete code: physical media decay (data rot)

Where is the archive. . .
where we go if (a repository on) GitHub or GitLab.com goes away?

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 4 / 31

So�ware lacks its own research infrastructure

A wealth of so�ware research on crucial issues. . .
safety, security, test, verification, proof

so�ware engineering, so�ware evolution

big data, machine learning, empirical studies

If you study the stars, you go to Atacama. . .

. . . where is the very large telescope of source code?

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 5 / 31

So�ware lacks its own research infrastructure

A wealth of so�ware research on crucial issues. . .
safety, security, test, verification, proof

so�ware engineering, so�ware evolution

big data, machine learning, empirical studies

If you study the stars, you go to Atacama. . .

. . . where is the very large telescope of source code?

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 5 / 31

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Gory details

5 Community

6 Conclusion

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 6 / 31

The So�ware Heritage Project

T H E G R E AT L I B R A RY O F S O U RC E C O D E

Our mission
Collect, preserve and share the source code of all the so�ware that is publicly available.

Past, present and future

Preserving the past, enhancing the present, preparing the future.

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 6 / 31

Our principles

Open approach

100% FOSS

transparency

In for the long haul

replication

non profit

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 7 / 31

Our principles

Open approach

100% FOSS

transparency

In for the long haul

replication

non profit

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 7 / 31

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Gory details

5 Community

6 Conclusion

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 8 / 31

Archiving goals

Targets: VCS repositories & source code releases (e.g., tarballs)

We DO archive
file content (= blobs)

revisions (= commits), with full metadata

releases (= tags), di�o

where (origin) & when (visit) we found any of the above

. . . in a VCS-/archive-agnostic canonical data model

We DON’T archive
homepages, wikis

BTS/issues/code reviews/etc.

mailing lists

Long term vision: play our part in a "semantic wikipedia of so�ware"

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 8 / 31

Data flow

dsc

dsc

hg

hg

hg

git
git

git git

svn

svn

svn

tar

zip

software
origins

Package
repos

Software Heritage
Archive

Forges
GitHub
lister

GitLab
lister

Debian
lister

Git
loader

Mercurial
loader

Debian source
package loader

PyPi
lister

tar loader

Merkle DAG
+

blob storage

.

.

.

.

.

.Distros

...

Scheduling

Listing
(full/incremental)

Loading
& deduplication

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 9 / 31

Merkle trees
Merkle tree (R. C. Merkle, Crypto 1979)

Combination of

tree

hash function

Classical cryptographic construction

fast, parallel signature of large data structures

widely used (e.g., Git, blockchains, IPFS, . . .)

built-in deduplication

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 10 / 31

Merkle trees
Merkle tree (R. C. Merkle, Crypto 1979)

Combination of

tree

hash function

Classical cryptographic construction

fast, parallel signature of large data structures

widely used (e.g., Git, blockchains, IPFS, . . .)

built-in deduplication
Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 10 / 31

Example: a So�ware Heritage revision

Note: most object kinds currently have Git-compatible identifiers

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 11 / 31

The archive: a (giant) Merkle DAG

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 12 / 31

Archive coverage

Our sources
GitHub — full, up-to-date mirror

Debian, GNU — one shot ingestion experiment (up to Aug 2015)

Gitorious, Google Code — processing (Archive Team & Google)

Bitbucket — WIP

Some numbers

150 TB blobs, 5 TB database (as a graph: 7 B nodes + 60 B edges)

The richest source code archive already, . . . and growing daily!

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 13 / 31

Archive coverage

Our sources
GitHub — full, up-to-date mirror

Debian, GNU — one shot ingestion experiment (up to Aug 2015)

Gitorious, Google Code — processing (Archive Team & Google)

Bitbucket — WIP

Some numbers

150 TB blobs, 5 TB database (as a graph: 7 B nodes + 60 B edges)

The richest source code archive already, . . . and growing daily!

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 13 / 31

Archive coverage

Our sources
GitHub — full, up-to-date mirror

Debian, GNU — one shot ingestion experiment (up to Aug 2015)

Gitorious, Google Code — processing (Archive Team & Google)

Bitbucket — WIP

Some numbers

150 TB blobs, 5 TB database (as a graph: 7 B nodes + 60 B edges)

The richest source code archive already, . . . and growing daily!

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 13 / 31

Web API

First public version of our Web API (Feb 2017)
https://archive.softwareheritage.org/api/

Features
pointwise browsing of the So�ware Heritage archive

. . . releases → revisions → directories → contents . . .

full access to the metadata of archived objects
crawling information

when have you last visited this Git repository I care about?
where were its branches/tags pointing to at the time?

Complete endpoint index

https://archive.softwareheritage.org/api/1/

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 14 / 31

https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/1/

A tour of the Web API — origins & visits

GET https://archive.softwareheritage.org/api/1/origin/ \
git/url/https://github.com/hylang/hy

{ "id": 1,
"origin_visits_url": "/api/1/origin/1/visits/",
"type": "git",
"url": "https://github.com/hylang/hy"

}

GET https://archive.softwareheritage.org/api/1/origin/ \
1/visits/

[...,
{ "date": "2016-09-14T11:04:26.769266+00:00",

"origin": 1,
"origin_visit_url": "/api/1/origin/1/visit/13/",
"status": "full",
"visit": 13

}, ...
]

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 15 / 31

A tour of the Web API — snapshots

GET https://archive.softwareheritage.org/api/1/origin/ \
1/visit/13/

{ ...,
"occurrences": { ...,

"refs/heads/master": {
"target": "b94211251...",
"target_type": "revision",
"target_url": "/api/1/revision/b94211251.../"

},
"refs/tags/0.10.0": {

"target": "7045404f3...",
"target_type": "release",
"target_url": "/api/1/release/7045404f3.../"

}, ...
},
"origin": 1,
"origin_url": "/api/1/origin/1/",
"status": "full",
"visit": 13

}
Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 16 / 31

A tour of the Web API — revisions

GET https://archive.softwareheritage.org/api/1/revision/ \
6072557b6c10cd9a21145781e26ad1f978ed14b9/

{
"author": {

"email": "tag@pault.ag",
"fullname": "Paul Tagliamonte <tag@pault.ag>",
"id": 96,
"name": "Paul Tagliamonte"

},
"committer": { ... },
"date": "2014-04-10T23:01:11-04:00",
"committer_date": "2014-04-10T23:01:11-04:00",
"directory": "2df4cd84e...",
"directory_url": "/api/1/directory/2df4cd84e.../",
"history_url": "/api/1/revision/6072557b6.../log/",
"merge": false,
"message": "0.10: The Oh f*ck it’s PyCon release",
"parents": [{

"id": "10149f66e...",
"url": "/api/1/revision/10149f66e.../"

}],
...

}

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 17 / 31

A tour of the Web API — contents

GET https://archive.softwareheritage.org/api/1/content/ \
adc83b19e793491b1c6ea0fd8b46cd9f32e592fc/

{
"data_url": "/api/1/content/sha1:adc83b19e.../raw/",
"filetype_url": "/api/1/content/sha1:.../filetype/",
"language_url": "/api/1/content/sha1:.../language/",
"length": 1,
"license_url": "/api/1/content/sha1:.../license/",
"sha1": "adc83b19e...",
"sha1_git": "8b1378917...",
"sha256": "01ba4719c...",
"status": "visible"

}

Caveats
rate limits apply throughout the API

blob download available for selected contents

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 18 / 31

A tour of the Web API — contents

GET https://archive.softwareheritage.org/api/1/content/ \
adc83b19e793491b1c6ea0fd8b46cd9f32e592fc/

{
"data_url": "/api/1/content/sha1:adc83b19e.../raw/",
"filetype_url": "/api/1/content/sha1:.../filetype/",
"language_url": "/api/1/content/sha1:.../language/",
"length": 1,
"license_url": "/api/1/content/sha1:.../license/",
"sha1": "adc83b19e...",
"sha1_git": "8b1378917...",
"sha256": "01ba4719c...",
"status": "visible"

}

Caveats
rate limits apply throughout the API

blob download available for selected contents

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 18 / 31

Roadmap

Features. . .
(done) lookup by content hash
browsing: "wayback machine" for archived code

(done) via Web API
(todo) via Web UI

(todo) download: wget / git clone from the archive

(todo) deposit of source code bundles directly to the archive

(todo) provenance information for all archived content

(todo) full-text search on all archived source code files

. . . and much more than one could possibly imagine

all the world’s so�ware development history in a single graph!

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 19 / 31

Roadmap

Features. . .
(done) lookup by content hash
browsing: "wayback machine" for archived code

(done) via Web API
(todo) via Web UI

(todo) download: wget / git clone from the archive

(todo) deposit of source code bundles directly to the archive

(todo) provenance information for all archived content

(todo) full-text search on all archived source code files

. . . and much more than one could possibly imagine

all the world’s so�ware development history in a single graph!

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 19 / 31

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Gory details

5 Community

6 Conclusion

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 20 / 31

Technology: how do you store the SWH DAG?

Problem statement
How would you store and query a graph with 10 billion nodes and 60 billion edges?

How would you store the contents of more than 3 billion files, 300TB of raw data?

on a limited budget (100 000 € of hardware overall)

Our hardware stack
two hypervisors with 512GB RAM, 20TB SSD each, sharing access to a storage
array (60 x 6TB spinning rust)

one backup server with 48GB RAM and another storage array

Our so�ware stack
A RDBMS (PostgreSQL, what else?), for storage of the graph nodes and edges

filesystems for storing the actual file contents

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 20 / 31

Technology: how do you store the SWH DAG?

Problem statement
How would you store and query a graph with 10 billion nodes and 60 billion edges?

How would you store the contents of more than 3 billion files, 300TB of raw data?

on a limited budget (100 000 € of hardware overall)

Our hardware stack
two hypervisors with 512GB RAM, 20TB SSD each, sharing access to a storage
array (60 x 6TB spinning rust)

one backup server with 48GB RAM and another storage array

Our so�ware stack
A RDBMS (PostgreSQL, what else?), for storage of the graph nodes and edges

filesystems for storing the actual file contents

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 20 / 31

Technology: archive storage components

Metadata storage

Python module swh.storage

thin Python API over a pile of PostgreSQL functions

motivation: keeping relational integrity at the lowest layer

Content ("object") storage

Python module swh.objstorage

very thin object storage abstraction layer (PUT, APPEND and GET) over regular
storage technologies

separate layer for asynchronous replication and integrity management
(swh.archiver)

motivation: stay as technology neutral as possible for future mirrors

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 21 / 31

Technology: object storage

Current primary deployment

Storage on 16 sharded XFS filesystems; key = sha1 (content), value = gzip (content)

if sha1 = abcdef01234. . . , file path = / srv / storage / a / ab / cd / ef / abcdef01234. . .

3 directory levels deep, each level 256-wide = 16 777 216 directories (1 048 576 per
partition)

Secondary deployment

Storage on Azure blob storage

16 storage containers, objects stored in a flat structure there

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 22 / 31

Technology: object storage review

Generic model is fine
The abstraction layer is fairly simple and generic, and the implementation of the upper
layers (replication, integrity checking) was a breeze.

Filesystem implementation is bad

Slow spinning storage + li�le RAM (48GB) + 16 million dentries = (very) bad performance

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 23 / 31

Technology: metadata storage

Current deployment

PostgreSQL deployed in primary/replica mode, using pg_logical for replication:
di�erent indexes on primary (tuned for writes) and replicas (tuned for reads).

most logic done in SQL

thin Pythonic API over the SQL functions

end goals

proper handling of relations between objects at the lowest level

doing fast recursive queries on the graph (e.g. find the provenance info for a
content, walking up the whole graph, in one single query)

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 24 / 31

Technology: metadata storage review

Limited resources
PostgreSQL works really well

. . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage
but Massive deduplication = exponential width for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 25 / 31

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage
but Massive deduplication = exponential width for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 25 / 31

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage
but Massive deduplication = exponential width for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 25 / 31

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage

but Massive deduplication = exponential width for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 25 / 31

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage
but Massive deduplication = exponential width for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 25 / 31

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage
but Massive deduplication = exponential width for recursive queries

Reality check

Referential integrity?

Real repositories downloaded from the internet are all kinds of
broken.

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 25 / 31

Technology: metadata storage review

Limited resources
PostgreSQL works really well . . . until your indexes don’t fit in RAM

Our recursive queries jump between di�erent object types, and between evenly
distributed hashes. Data locality doesn’t exist. Caches break down.

Massive deduplication = e�icient storage
but Massive deduplication = exponential width for recursive queries

Reality check

Referential integrity? Real repositories downloaded from the internet are all kinds of
broken.

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 25 / 31

Technology: outlook

Object storage

Our azure prototype shows that using a scale-out "cloudy" technology for our object
storage works really well. Plain filesystems on spinning rust, not so much.

We need to investigate other storage tech (ceph, swi�, . . .) for our main copy of the
archive as our budget ramps up.

Metadata storage

Our initial assumption that we wanted referential integrity and built-in recursive
queries was wrong.
We could probably migrate to "dumb" object storages for each type of object, with
another layer to check metadata integrity regularly.

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 26 / 31

Technology: outlook

Object storage

Our azure prototype shows that using a scale-out "cloudy" technology for our object
storage works really well. Plain filesystems on spinning rust, not so much.
We need to investigate other storage tech (ceph, swi�, . . .) for our main copy of the
archive as our budget ramps up.

Metadata storage

Our initial assumption that we wanted referential integrity and built-in recursive
queries was wrong.
We could probably migrate to "dumb" object storages for each type of object, with
another layer to check metadata integrity regularly.

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 26 / 31

Technology: outlook

Object storage

Our azure prototype shows that using a scale-out "cloudy" technology for our object
storage works really well. Plain filesystems on spinning rust, not so much.
We need to investigate other storage tech (ceph, swi�, . . .) for our main copy of the
archive as our budget ramps up.

Metadata storage

Our initial assumption that we wanted referential integrity and built-in recursive
queries was wrong.

We could probably migrate to "dumb" object storages for each type of object, with
another layer to check metadata integrity regularly.

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 26 / 31

Technology: outlook

Object storage

Our azure prototype shows that using a scale-out "cloudy" technology for our object
storage works really well. Plain filesystems on spinning rust, not so much.
We need to investigate other storage tech (ceph, swi�, . . .) for our main copy of the
archive as our budget ramps up.

Metadata storage

Our initial assumption that we wanted referential integrity and built-in recursive
queries was wrong.
We could probably migrate to "dumb" object storages for each type of object, with
another layer to check metadata integrity regularly.

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 26 / 31

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Gory details

5 Community

6 Conclusion

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 27 / 31

You can help!

Coding

www.softwareheritage.org/community/developers/
forge.softwareheritage.org — our own code

Current development priorities

888 listers for unsupported forges, distros, pkg. managers
888 loaders for unsupported VCS, source package formats
88 Web UI: eye candy wrapper around the Web API
8 content indexing and search

. . . all contributions equally welcome!

Join us

www.softwareheritage.org/jobs — job openings

wiki.softwareheritage.org — internships

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 27 / 31

www.softwareheritage.org/community/developers/
forge.softwareheritage.org
www.softwareheritage.org/jobs
wiki.softwareheritage.org

You can help!

Coding

www.softwareheritage.org/community/developers/
forge.softwareheritage.org — our own code

Current development priorities

888 listers for unsupported forges, distros, pkg. managers
888 loaders for unsupported VCS, source package formats
88 Web UI: eye candy wrapper around the Web API
8 content indexing and search

. . . all contributions equally welcome!

Join us

www.softwareheritage.org/jobs — job openings

wiki.softwareheritage.org — internships

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 27 / 31

www.softwareheritage.org/community/developers/
forge.softwareheritage.org
www.softwareheritage.org/jobs
wiki.softwareheritage.org

Sharing the So�ware Heritage vision

See more
http:://www.softwareheritage.org/support/testimonials

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 28 / 31

http:://www.softwareheritage.org/support/testimonials

Sponsoring So�ware Heritage work

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 29 / 31

Going global

April 3rd, 2017: landmark UNESCO/Inria agreement. . .

www.softwareheritage.org/?p=11623

Next step: 27-28 Sep 2017: UNESCO/Inria conference in Paris

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 30 / 31

www.softwareheritage.org/?p=11623

Outline

1 The So�ware Commons

2 So�ware Heritage

3 Architecture

4 Gory details

5 Community

6 Conclusion

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 31 / 31

Conclusion

So�ware Heritage is

a reference archive of all FOSS ever wri�en

a unique complement for development platforms

an international, open, nonprofit, mutualized infrastructure

at the service of our community, at the service of society

References
Roberto Di Cosmo, Stefano Zacchiroli. So�ware Heritage: Why and How to Preserve So�ware
Source Code. To appear, iPRES 2017, Kyoto, Sep 2017. Preprint: http://deb.li/swhipres17

Come in, we’re open!

www.softwareheritage.org — sponsoring, job openings
wiki.softwareheritage.org — internships, leads
forge.softwareheritage.org — our own code

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 31 / 31

http://deb.li/swhipres17
www.softwareheritage.org
wiki.softwareheritage.org
forge.softwareheritage.org

Q: how about SHA1 collisions?

create domain sha1 as bytea
check (l e n g t h (value) = 2 0) ;

create domain s h a 1 _ g i t as bytea
check (l e n g t h (value) = 2 0) ;

create domain sha256 as bytea
check (l e n g t h (value) = 3 2) ;

create table c o n t e n t (
sha1 sha1 primary key ,
s h a 1 _ g i t s h a 1 _ g i t not null ,
sha256 sha256 not null ,
l e n g t h b i g i n t not null ,
c t ime t imes tamptz not nul l defaul t now () ,
s t a t u s c o n t e n t _ s t a t u s not nul l defaul t ’ v i s i b l e ’ ,
o b j e c t _ i d b i g s e r i a l

) ;

create unique index on c o n t e n t (s h a 1 _ g i t) ;
create unique index on c o n t e n t (sha256) ;

Nicolas Dandrimont, Stefano Zacchiroli So�ware Heritage: Our So�ware Commons, Forever. DebConf 1 / 1

	The Software Commons
	Software Heritage
	Architecture
	Gory details
	Community
	Conclusion
	Appendix

