Preserving Source Code
Challenges and Opportunities for the Reproductibility of Science

Stefano Zacchirolı
University Paris Diderot & Inria
zack@upsilon.cc

25 May 2017
DAUIN, Politecnico di Torino — Turin, Italy
1. Reproducibility
2. Software Heritage
3. Technical overview
4. Current status
5. Outlook
How we built our scientific knowledge

The experimental method

- make an *observation*
- formulate an *hypothesis*
- set up an *experiment*
- formulate a *theory*

And then we reproduce and verify.
How we built our scientific knowledge

The experimental method

- make an observation
- formulate an hypothesis
- set up an experiment
- formulate a theory

And then we reproduce and verify.

Reproducibility is the key

non-reproducible single occurrences are of no significance to science

Karl Popper, *The Logic of Scientific Discovery*, 1934
Reproducibility (Wikipedia)

the ability of an entire experiment or study to be reproduced, either by the researcher or by someone else working independently. It is one of the main principles of the scientific method.

Why we want it

- foundation of the scientific method
- accelerator of research: allows to build upon previous work
- visibility: reproducible results are cited more often
- transparency of results eases acceptance
- necessary for industrial transfer

reproducibility is the essence of industry!
Reproducibility in the digital age

For an experiment involving software, we need:

- open access to the scientific article describing it
- open data sets used in the experiment
- source code of all the components
- environment of execution
- stable references between all this

Remark: The first two items are already widely discussed!... what about software?
Reproducibility in the digital age

For an experiment involving software, we need:
- **open access** to the scientific article describing it
- **open data sets** used in the experiment
- **source code** of all the components
- **environment** of execution
- **stable references** between all this

Remark

The first two items are already widely discussed!

... what about *software*?
Software is an essential component of modern scientific research

Top 100 papers (Nature, October 2014)

[...] the vast majority describe experimental methods or software that have become essential in their fields.

http://www.nature.com/news/the-top-100-papers-1.16224
Software and reproducibility

A fundamental question
How are we doing, regarding reproducibility, in Software?

The case of Computer Systems Research
A field with Computer experts … we have high expectations!
Christian Collberg set out to check them.

Measuring Reproducibility in Computer Systems Research
Long and detailed technical report, March 2014
http://reproducibility.cs.arizona.edu/v1/tr.pdf
Collberg’s report from the trenches

Analysis of 613 papers

- 8 ACM conferences: ASPLOS’12, CCS’12, OOPSLA’12, OSDI’12, PLDI’12, SIGMOD’12, SOSP’11, VLDB’12
- 5 journals: TACO’9, TISSEC’15, TOCS’30, TODS’37, TOPLAS’34

all very practical oriented

The basic question

can we get the code to build and run?
The result

This can be debated (see http://cs.brown.edu/~sk/Memos/Examining-Reproducibility/), but...

... that’s a whopping 81% of non reproducible works!
The reasons (or, “the dog ate my program”)

Why so much software fails to pass the test?

Many issues, nice anecdotes, and it finally boils down to

- **Availability**
- **Traceability**
- Environment
- Automation (do you use continuous integration?)
- Documentation
- Understanding (including free/open source software)
Why so much software fails to pass the test?

Many issues, nice anecdotes, and it finally boils down to

- Availability
- Traceability
- Environment
- Automation (do you use continuous integration?)
- Documentation
- Understanding (including free/open source software)

The first two are important software preservation issues

Yes, code is fragile:

it can be destroyed, and we can lose trace of it
Like all digital information, FOSS is fragile

- inconsiderate and/or malicious code loss (e.g., Code Spaces)
- business-driven code loss (e.g., Gitorious, Google Code)
- for obsolete code: physical media decay (data rot)
Like all digital information, FOSS is fragile

- inconsiderate and/or malicious code loss (e.g., Code Spaces)
- business-driven code loss (e.g., Gitorious, Google Code)
- for obsolete code: physical media decay (data rot)

Where is the archive...

where we go if (a repository on) GitHub or GitLab.com goes away?
Software is spread all around

Fashion victims

- many disparate development platforms
- a myriad places where distribution may happen
- projects tend to migrate from one place to another over time
Software is spread all around

Fashion victims

- many disparate development platforms
- a myriad places where distribution may happen
- projects tend to migrate from one place to another over time

Where is the place ...

where we can find, track and search *all* source code?
1. Reproducibility
2. Software Heritage
3. Technical overview
4. Current status
5. Outlook
The Software Heritage Project

Our mission
Collect, preserve and share the source code of all the software that is publicly available.

Past, present and future
Preserving the past, enhancing the present, preparing the future.
We are working on the foundations
one infrastructure to build them all

- Mankind's memory
- Long term preservation
- Unique reference
- Software

Cultural Heritage

- Reference repository
- Provenance
- Certification
- Security

Industry

- Reproducibility
- Traceability
- Open Access
- Software studies

Research

- Universal SourceBook
- Reference examples
- Enriched source code
- Code documentation

Education

Software Heritage
Supporting more accessible and reproducible science

- A global library referencing all software used in all research fields
 - completes the infrastructure for Open Access in science
 - provides intrinsic persistent identifiers needed for scientific reproducibility
 - enables large scale, verifiable software studies
Software lacks its own research infrastructure

A wealth of software research on crucial issues...

- safety, security, test, verification, proof
- software engineering, software evolution
- big data, machine learning, empirical studies
Software lacks its own research infrastructure

A wealth of software research on crucial issues…

- safety, security, test, verification, proof
- software engineering, software evolution
- big data, machine learning, empirical studies

If you study the stars, you go to Atacama…

… where is the very large telescope of source code?
Better software for industry and society

A unique reference catalog of all industrial software components

- a single entry point to discover, explore and reuse source code
- eases vulnerability tracking for more secure software
- simplifies traceability for better software integration
- ensures long term preservation of critical software
Fostering wider education to computing

A global source referencing all software
- a source book for technological education
- intrinsic persistent identifiers for stable course materials
- enables real-world, semi-automated documentation
Archiving goals

Targets: VCS repositories & source code releases (e.g., tarballs)

We DO archive

- file content (= blobs)
- revisions (= commits), with full metadata
- releases (= tags), ditto
- where (origin) & when (visit) we found any of the above

... in a VCS-/archive-agnostic canonical data model

We DON’T archive

- homepages, wikis
- BTS/issues/code reviews/etc.
- mailing lists

Long term vision: play our part in a "semantic wikipedia of software"
Data flow

Forges
GitHub lister
GitLab lister
Debian lister
PyPi lister

software origins

git
git
hg
hg
hg
dsc
dsc
tar
zip

Git loader
Mercurial loader
Debian source package loader
tar loader

Software Heritage Archive
Merkle DAG + blob storage

Listing (full/incremental)
Loading & deduplication
Scheduling

Distros

Package repos

CPAN

npm

...
Merkle trees

Merkle tree (R. C. Merkle, Crypto 1979)

Combination of
- tree
- hash function
Merkle trees

Merkle tree (R. C. Merkle, Crypto 1979)

Combination of
- tree
- hash function

Classical cryptographic construction
- fast, parallel signature of large data structures
- widely used (e.g., Git, blockchains, IPFS, …)
- built-in deduplication
The Software Heritage archive: a gigantic Merkle DAG

Stefano Zacchirolí

Preserving Source Code 25/05/2017, DAUIN 21 / 36
The Software Heritage archive: a gigantic Merkle DAG

Contents

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program--to make sure it remains
free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
particular commercial uses. These restrictions are important to
protect free distribution of software that is free software without
compensation.

We have designed these restrictions to maximize the chances of
maintaining a free version of the software, and still make it possible
to use the program for noncommercial purposes. These restrictions
are important to the long term development of free software.

Finally, every free program is threatened by software patents.
This is one reason it is important to let people change and
develop free programs freely. No one should be able to prevent the
improvement of a program simply because an individual or company
can change the program.

However, if license holders would like to have patents
enforced, there is always a way to do this. It does not require
making the program proprietary. See section 3 for more
information.

We, the Free Software Foundation, wish to make sure that
everyone has the freedom to use free software--no one should
be stopped from having or using it, now or in the future. We
work hard to protect the freedom of users.

Therefore, by sending胸怀 this document, you agree to
accept the license that we give you.

SHA1: 8624bcdae55baeef...
SHA256: 8ceb4b9ee5aded...
SHA1_git: 94a9ed024d385...
Length: 35147
The Software Heritage archive: a gigantic Merkle DAG
The Software Heritage archive: a gigantic Merkle DAG

Stefano Zacchirolı

Preserving Source Code 25/05/2017, DAUIN 21 / 36

Directories

100644 blob c5baade4c44766042186ef858c0fd63d587ebf09 .gitignore
100644 blob 2da3a34af6f52cf3cf6b0c2f7db0d48fd8255e7f AUTHORS
100644 blob 94a9ed024d38559793618152ea59a168bbcb5e2 LICENSE
100644 blob d9b2665a435a43f8a79a84e867751df8b95c7bb MANIFEST.in
100644 blob 524175c2bad0b35b975f79284c2f5a6d5eaf2e4 Makefile
100644 blob 5c7e3a5bbddd038682ba7793f440492ed9678bb3 Makefile.local
100644 blob 8617980629cd24e6080404f09aa749b085b3e97b README.db_testing
100644 blob 76b29f94cf815e869c414d38d78d7ce8b514e README.dev
040000 tree e1e18ecf948a0f0b3d8b0372af89f12e92618a bin
040000 tree 83e56d0beaf7793c77a45a345c80fcb8af503013 debian
040000 tree a34c9c4ba213f0c6edc67f9816348d2795577af5 docs
100644 blob f2a6d32c6135aa7287bbd7616b01df2ae4f1539 requirements.txt
100755 tree eee147c36caf1bcb2d820da8dc026cb5b68188bc setup.py
040000 tree 224bb4c1f4c67fca1d160bfdd2d0694e7e1abf3 sql
040000 tree 8631c9cd77be993168107ab5ba5f1f40c6300be swh
040000 tree 8fb905b56ba8ed692f1209b2773b474c6c1d66c1 utils

id: 515f00d44e92c65322aaa9bf3fa097c00dd9c7d
The Software Heritage archive: a gigantic Merkle DAG

Stefano Zacchirolı
The Software Heritage archive: a gigantic Merkle DAG

Revisions

```
<table>
<thead>
<tr>
<th>Details</th>
<th>Changes</th>
<th>Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHA: 963634dca6ba5dc3e3ee426ba091092c267f9f6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author: Nicolas Dandrimont <a href="mailto:nicolas@dandrimont.eu">nicolas@dandrimont.eu</a> (Thu Sep 1 14:26:13 2018)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Committer: Nicolas Dandrimont <a href="mailto:nicolas@dandrimont.eu">nicolas@dandrimont.eu</a> (Thu Sep 1 14:26:13 2018)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject: provenance.tasks: add the revision -&gt; origin cache task</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent: fc3a8b59ca1d4f42d4860f2c29ab07fee4dc35d10 : test_storage: properly pipeline origin and cont...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>provenance.tasks: add the revision -&gt; origin cache task</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
 tree 515f00d44e92c6532aaa9bf3fa097c00dd9c7d
 parent fc3a8b59ca1d4f42d4860f2c29ab07fee4dc35d10
 author Nicolas Dandrimont <nicolas@dandrimont.eu> 1472732773 +0200
 committer Nicolas Dandrimont <nicolas@dandrimont.eu> 1472732773 +0200

 provenance.tasks: add the revision -> origin cache task

 id: 963634dca6ba5dc3e3ee426ba091092c267f9f6
```
The Software Heritage archive: a gigantic Merkle DAG

Snapshots

Releases

Revisions

Directories

Contents
The Software Heritage archive: a gigantic Merkle DAG

Stefano Zacchirolı

Preserving Source Code 25/05/2017, DAUIN 21 / 36

Releases

object c0cf916b1e134f593e7567570a1761b156e6eb1d

type commit
tag v0.0.51
tagger Nicolas Dandrimont <nicolas@dandrimont.eu> 14772042163 +0200

Release swh.storage v0.0.51

- Add new metadata column to originVisit
- Update swh-add-directory script for updated API

BEGIN PGP SIGNATURE

iQz88AABCDAaDBQJxZTfhxuaWvnbGFrQGRhnmLyaw1vbnQuZXUAGkgO7AWLMoZ+ neqprw/Aq650bSIdjEB8+kWNN3XGy5+1K1vEvh1lWMAwx88Kj2KE-LD7Tuf ahzp7Pz3PMoHs46QCP3xI+YrBDpCN3L2ftrdZevXXWGrxhWNMaAt6YDB8yqphw8AD2s2 ICBIr2ujXxQoD39eKKPvwZxGg+h8psmvW5y3Dr6jWZ7K4MuFPGglyHPY5Syo IGxEnDWhz7VHw1VMv616ngB75mSMRaqg+becqggubTZxzij+iIpUqCRIcyqN3hm/jL qrJ2mu8Ky3GTb5H1pJp1+v50wBrlnPoSS7HbtojEuqKchSDtyd9D4i6c7n1C

-----END PGP SIGNATURE-----

id: 85083a5cc14a441c89dea73f5bf67c3f9c6afdb
The Software Heritage archive: a gigantic Merkle DAG
Archive coverage

Our sources

- GitHub — full, up-to-date mirror
- Debian, GNU — one shot ingestion experiment (up to Aug 2015)
- Gitorious, Google Code — local copy (Archive Team & Google)
- Bitbucket — WIP

Some numbers

- 150 TB blobs, 5 TB database (as a graph: 7 B nodes + 60 B edges)

The richest source code archive already, ... and growing daily!
Archive coverage

Our sources

- GitHub — full, up-to-date mirror
- Debian, GNU — one shot ingestion experiment (up to Aug 2015)
- Gitorious, Google Code — local copy (Archive Team & Google)
- Bitbucket — WIP

Some numbers

150 TB blobs, 5 TB database (as a graph: 7 B nodes + 60 B edges)
Archive coverage

Our sources

- GitHub — full, up-to-date mirror
- Debian, GNU — one shot ingestion experiment (up to Aug 2015)
- Gitorious, Google Code — local copy (Archive Team & Google)
- Bitbucket — WIP

Some numbers

150 TB blobs, 5 TB database (as a graph: 7 B nodes + 60 B edges)

The richest source code archive already, … and growing daily!
Fresh from the oven: first public version of our Web API

https://archive.softwareheritage.org/api/
Fresh from the oven: first public version of our Web API

https://archive.softwareheritage.org/api/

Features

- **pointwise browsing** of the Software Heritage archive
 - … releases → revisions → directories → contents …

- full access to the **metadata** of archived objects

- **crawling** information
 - when have you last visited this Git repository I care about?
 - where were its branches/tags pointing to at the time?
Fresh from the oven: first public version of our Web API
https://archive.softwareheritage.org/api/

Features

- pointwise browsing of the Software Heritage archive
 - … releases → revisions → directories → contents …

- full access to the metadata of archived objects

- crawling information
 - when have you last visited this Git repository I care about?
 - where were its branches/tags pointing to at the time?

Complete endpoint index
https://archive.softwareheritage.org/api/1/
GET https://archive.softwareheritage.org/api/1/origin/ \
 git/url/https://github.com/hylang/hy
{
 "id": 1,
 "origin_visits_url": "/api/1/origin/1/visits/",
 "type": "git",
 "url": "https://github.com/hylang/hy"
}

GET https://archive.softwareheritage.org/api/1/origin/ \
 1/visits/
[
 ...,
 {
 "date": "2016-09-14T11:04:26.769266+00:00",
 "origin": 1,
 "origin_visit_url": "/api/1/origin/1/visit/13/",
 "status": "full",
 "visit": 13
 }, ...
]
A tour of the Web API — snapshots

GET https://archive.softwareheritage.org/api/1/origin/ \
 1/visit/13/
{
 ...,
 "occurrences": { ...,
 "refs/heads/master": {
 "target": "b94211251...",
 "target_type": "revision",
 "target_url": "/api/1/revision/b94211251.../
 },
 "refs/tags/0.10.0": {
 "target": "7045404f3...",
 "target_type": "release",
 "target_url": "/api/1/release/7045404f3.../
 },
 }, ...
},
"origin": 1,
"origin_url": "/api/1/origin/1/",
"status": "full",
"visit": 13
}
A tour of the Web API — revisions

GET https://archive.softwareheritage.org/api/1/revision/6072557b6c10cd9a21145781e26ad1f978ed14b9/

{
 "author": {
 "email": "tag@pault.ag",
 "fullname": "Paul Tagliamonte <tag@pault.ag>",
 "id": 96,
 "name": "Paul Tagliamonte"
 },
 "committer": { ... },
 "date": "2014-04-10T23:01:11-04:00",
 "committer_date": "2014-04-10T23:01:11-04:00",
 "directory": "2df4cd84e...",
 "directory_url": "/api/1/directory/2df4cd84e.../",
 "history_url": "/api/1/revision/6072557b6.../log/",
 "merge": false,
 "message": "0.10: The Oh f*ck it’s PyCon release",
 "parents": [{
 "id": "10149f66e...",
 "url": "/api/1/revision/10149f66e.../
 }]
}
A tour of the Web API — contents

GET https://archive.softwareheritage.org/api/1/content/ \adc83b19e793491b1c6ea0fd8b46cd9f32e592fc/

{
 "data_url": "https://archive.softwareheritage.org/api/1/content/sha1:adc83b19e.../raw/",
 "filetype_url": "https://archive.softwareheritage.org/api/1/content/sha1:.../filetype/",
 "language_url": "https://archive.softwareheritage.org/api/1/content/sha1:.../language/",
 "length": 1,
 "license_url": "https://archive.softwareheritage.org/api/1/content/sha1:.../license/",
 "sha1": "adc83b19e...",
 "sha1_git": "8b1378917...",
 "sha256": "01ba4719c...",
 "status": "visible"
}
GET https://archive.softwareheritage.org/api/1/content/\adc83b19e793491b1c6ea0fd8b46cd9f32e592fc/
{
 "data_url": "/api/1/content/sha1:adc83b19e.../raw/",
 "filetype_url": "/api/1/content/sha1:.../filetype/",
 "language_url": "/api/1/content/sha1:.../language/",
 "length": 1,
 "license_url": "/api/1/content/sha1:.../license/",
 "sha1": "adc83b19e...",
 "sha1_git": "8b1378917...",
 "sha256": "01ba4719c...",
 "status": "visible"
}

Caveats

- rate limits apply throughout the API
- blob download available for selected contents
Roadmap

Features...

- (done) **lookup** by content hash
- **browsing**: "wayback machine" for archived code
 - (done) via Web API
 - (todo) via Web UI
- (todo) **download**: `wget` / `git clone` from the archive
- (todo) **provenance information** for all archived content
- (todo) **full-text search** on all archived source code files

...and much more than one could possibly imagine

all the world's software development history in a single graph!
Features...

- (done) **lookup** by content hash
- **browsing**: "wayback machine" for archived code
 - (done) via Web API
 - (todo) via Web UI
- (todo) **download**: `wget` / `git clone` from the archive
- (todo) **provenance information** for all archived content
- (todo) **full-text search** on all archived source code files

... and much more than one could possibly imagine

all the world’s software development history in a single graph!
Challenges — scaling

- big, but not *that* big — it’s all text (in the good repos…)

object storage
hundreds of TB is taxing for volunteer mirror operators
good replication properties: append only, self healing
costly extraordinary maintenance, e.g., primary key changes

Merkle DAG
good choice to counter hosting site inflation
beyond the state of the art of graph databases (?)
e.g., provenance queries are expensive
mitigation: (large) caches

full text indexes
might be arbitrary large, but entirely derived data

AST-based search won’t work: too much diversity
"stupid" stemming? trigrams?
Challenges — scaling

- big, but not *that* big — it’s all text (in the good repos…)
- object storage
 - hundreds of TB is taxing for volunteer mirror operators
 - good replication properties: append only, self healing
 - costly extraordinary maintenance, e.g., primary key changes
Challenges — scaling

- big, but not *that* big — it’s all text (in the good repos…)

- object storage
 - hundreds of TB is taxing for volunteer mirror operators
 - good replication properties: append only, self healing
 - costly extraordinary maintenance, e.g., primary key changes

- Merkle DAG
 - good choice to counter hosting site inflation
 - beyond the state of the art of graph databases (?)
 - e.g., provenance queries are expensive
 - mitigation: (large) caches
Challenges — scaling

- big, but not *that* big — it’s all text (in the good repos…)

- object storage
 - hundreds of TB is taxing for volunteer mirror operators
 - good replication properties: append only, self-healing
 - costly extraordinary maintenance, e.g., primary key changes

- Merkle DAG
 - good choice to counter hosting site inflation
 - beyond the state of the art of graph databases (?)
 - e.g., provenance queries are expensive
 - mitigation: (large) caches

- full text indexes
 - might be arbitrary large, but entirely derived data
 - AST-based search won’t work: too much diversity
 - "stupid" stemming? trigrams?
Challenges — operational accountability

- the mission is more important than any of us
- how can we prove we’re pursuing it as soundly as possible?
- … and recover from mistakes if/when they happen?
Challenges — operational accountability

- the mission is more important than any of us
- how can we *prove* we’re pursuing it as soundly as possible?
- … and *recover* from mistakes if/when they happen?

- difficult at this scale
- some elements of response:
 - 100% FOSS & open development
 - full, public ledger of all changes to all data throughout their entire life cycle — ingestion/maintenance/mirroring/… (?)
You can help... coders!

Coding
- www.softwareheritage.org/community/developers/
- forge.softwareheritage.org — our own code

Join us
- www.softwareheritage.org/jobs — job openings
- wiki.softwareheritage.org/index.php?title=Internships — internships
You can help... scientists!

Community

- www.softwareheritage.org/community/scientists/
- swh-science@inria.fr
- wiki.softwareheritage.org/index.php?title=Working_groups

Working groups (planned)

- Extending the archive
 - Source Discovery and Ingestion
 - Metadata and Linked Data
- Evolving the archive
 - Modeling and Ingesting Version control systems
 - Distribution, Replication and Query

Working groups (planned)

- Connecting the archive
 - Reproducibility of Software
 - Open Access and Data
- Using the archive
 - Scientific API
 - Ethical and Legal Issues and Environment
Sharing the Software Heritage vision

See more

http://www.softwareheritage.org/support/testimonials
Sponsoring Software Heritage work

Microsoft

Intel

Société Générale

Huawei

DANS

Nokia Bell Labs
April 3rd, 2017: landmark UNESCO/Inria agreement…

www.softwareheritage.org/?p=11623

Conclusion

Software Heritage is

- a reference archive of all FOSS ever written
- a unique complement for development platforms
- an international, open, nonprofit, mutualized infrastructure
- at the service of our community, at the service of society

Come in, we’re open!

www.softwareheritage.org — sponsoring, job openings
wiki.softwareheritage.org — internships, working groups
forge.softwareheritage.org — our own code

References

https://upsilon.cc/~zack/stuff/software-heritage-draft.pdf
FAQ: how about SHA1 collisions?

```sql
create domain sha1 as bytea
    check (length(value) = 20);
create domain sha1_git as bytea
    check (length(value) = 20);
create domain sha256 as bytea
    check (length(value) = 32);

create table content ( sha1 sha1 primary key,
    sha1_git sha1_git not null,
    sha256 sha256 not null,
    length bigint not null,
    ctime timestamp not null default now(),
    status content_status not null default 'visible',
    object_id bigserial )

create unique index on content(sha1_git);
create unique index on content(sha256);
```