Preserving Software
Challenges and Opportunities
for Reproducibility of Science and Technology

Roberto Di Cosmo
Scilabtec 2015 - Paris
Irill - INRIA - University Paris Diderot
roberto@dicosmo.org

21st of May 2015
1. The scientific method

2. Software is Our Knowledge

3. The state of Software reproducibility

4. Software is Fragile

5. Preserving digital knowledge
The experimental method

- make an *observation*
- formulate an *hypothesis*
- set up an *experiment*
- formulate a *theory*
How we built our scientific knowledge

The experimental method

- make an *observation*
- formulate an *hypothesis*
- set up an *experiment*
- formulate a *theory*

And then we *reproduce* and *verify*.

Reproducibility is the key. Non-reproducible single occurrences are of no significance to science.

Karl Popper, *The Logic of Scientific Discovery*, 1934
The experimental method

- make an *observation*
- formulate an *hypothesis*
- set up an *experiment*
- formulate a *theory*

And then we **reproduce** and **verify**.

Reproducibility is the key

non-reproducible single occurrences are of no significance to science

Karl Popper, The Logic of Scientific Discovery, 1934
Reproducibility (Wikipedia)

the ability of an entire experiment or study to be reproduced, either by the researcher or by someone else working independently. It is one of the main principles of the scientific method.
Reproducibility (Wikipedia)

the ability of an entire experiment or study to be *reproduced*, either by the researcher or *by someone else working independently*. It is one of the main principles of the scientific method.

Why we want it

Foundation of the scientific method

Accelerator of research: allows to build upon previous work

Visibility: reproducible results are cited more often

Transparency of results: eases acceptance

Necessary for industrial transfer: reproducibility is the essence of industry!
Reproducibility, today

Reproducibility (Wikipedia)
the ability of an entire experiment or study to be reproduced, either by the researcher or by someone else working independently. It is one of the main principles of the scientific method.

Why we want it
foundation of the scientific method
Reproducibility (Wikipedia)

the ability of an entire experiment or study to be *reproduced*, either by the researcher or *by someone else working independently*. It is one of the main principles of the scientific method.

<table>
<thead>
<tr>
<th>Why we want it</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>foundation</td>
<td>of the scientific method</td>
</tr>
<tr>
<td>accelerator</td>
<td>of research: allows to build upon previous work</td>
</tr>
</tbody>
</table>
Reproducibility (Wikipedia)

the ability of an entire experiment or study to be *reproduced*, either by the researcher or *by someone else working independently*. It is one of the main principles of the scientific method.

Why we want it

- **foundation** of the scientific method
- **accelerator** of research: allows to build upon previous work
- **visibility** reproducible results are cited more often

Reproducibility (Wikipedia)

the ability of an entire experiment or study to be reproduced, either by the researcher or by someone else working independently. It is one of the main principles of the scientific method.

Why we want it

- **foundation** of the scientific method
- **accelerator** of research: allows to build upon previous work
- **visibility** reproducible results are cited more often

- **transparency** of results eases acceptance
Reproducibility, today

Reproducibility (Wikipedia)
the ability of an entire experiment or study to be reproduced, either by the researcher or by someone else working independently. It is one of the main principles of the scientific method.

Why we want it
- foundation of the scientific method
- accelerator of research: allows to build upon previous work
- visibility reproducible results are cited more often

Piwowar et al. *Sharing Detailed Research Data Is Associated with Increased Citation Rate.* PLoS ONE 2(3): e308, 2007

transparency of results eases acceptance
necessary for industrial transfer

reproducibility is the essence of industry!
Outline

1. The scientific method
2. Software is Our Knowledge
3. The state of Software reproducibility
4. Software is Fragile
5. Preserving digital knowledge
Today: Software is Science’s cornerstone

Software is an essential component of modern scientific research.

Deep knowledge from all fields is embodied in complex software systems.
Today: Software is Science’s cornerstone

Software is *an essential component* of modern scientific research.

Deep knowledge from *all fields* is embodied in complex software systems.

Top 100 papers (Nature, October 2014)

* [...] the vast majority describe experimental methods or software that have become essential in their fields.*

http://www.nature.com/news/the-top-100-papers-1.16224
Today: Software is Science’s cornerstone

Software is an essential component of modern scientific research

Deep knowledge from all fields is embodied in complex software systems

Top 100 papers (Nature, October 2014)

[...] the vast majority describe experimental methods or software that have become essential in their fields.

http://www.nature.com/news/the-top-100-papers-1.16224

Software is the pillar of science
Software is Pervasive

At the heart of technology

- televisions/fridges ≈ 10M SLOC
- phones ≈ 20M SLOC
- cars ≈ 100M SLOC
- IoT ...

Information is a main pillar of our modern societies. Absent an ability to correctly interpret digital information, we are left with "rotting bits" of no value. - Vinton G. Cerf, IEEE 2011
At the heart of technology

- Televisions/fridges ≈ 10M SLOC
- Phones ≈ 20M SLOC
- Cars ≈ 100M SLOC
- IoT ...

Key mediator for accessing all information

Information is a main pillar of our modern societies.

Absent an ability to correctly interpret digital information, we are left with [...] “rotting bits” [...] of no value.

Vinton G. Cerf IEEE 2011
Software is Pervasive

At the heart of technology

- Televisions/fridges \(\approx 10\text{M SLOC}\)
- Phones \(\approx 20\text{M SLOC}\)
- Cars \(\approx 100\text{M SLOC}\)
- IoT ...

Key mediator for accessing all information

Information is a main pillar of our modern societies.

Absent an ability to correctly interpret digital information, we are left with [...] "rotting bits" [...] of no value.

Vinton G. Cerf IEEE 2011

Software is an essential enabler for all technology
For an experiment involving software, we need

- open access to the scientific article describing it
- open data sets used in the experiment
- source code of all the components
- environment of execution
- stable references between all this
Reproducibility in the digital age

For an experiment involving software, we need

- **open access** to the scientific article describing it
- **open data sets** used in the experiment
- **source code** of all the components
- **environment** of execution
- **stable references** between all this

The first two items are already widely acknowledged

- **open access** Berlin declaration, 2003
 - http://openaccess.mpg.de
- **open data sets** Declaration on open access to scientific data,
For an experiment involving software, we need

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>open access</td>
<td>to the scientific article describing it</td>
</tr>
<tr>
<td>open data sets</td>
<td>used in the experiment</td>
</tr>
<tr>
<td>source code</td>
<td>of all the components</td>
</tr>
<tr>
<td>environment</td>
<td>of execution</td>
</tr>
<tr>
<td>stable references</td>
<td>between all this</td>
</tr>
</tbody>
</table>

The first two items are already widely acknowledged

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>open access</td>
<td>Berlin declaration, 2003</td>
</tr>
<tr>
<td></td>
<td>http://openaccess.mpg.de</td>
</tr>
<tr>
<td>open data sets</td>
<td>Declaration on open access to scientific data, OECD, 2004</td>
</tr>
</tbody>
</table>

What about the code?
Why Open Source?

Having access to (all) the source of (all) the code used in an experiment is important:

- even the simplest experiments depend on a wealth of components and configuration options
Why Open Source?

Having access to (all) the source of (all) the code used in an experiment is important:

- even the simplest experiments depend on a wealth of components and configuration options
- source code is like the proof used in a theorem: no more *Fermat statements* like “the details are omitted due to lack of space”

Free and Open Source Software is the best choice!

Roberto Di Cosmo
Preserving Software for Reproductibility 9/26
Why Open Source?

Having access to (all) the source of (all) the code used in an experiment is important:

- even the simplest experiments depend on a wealth of components and configuration options
- source code is like the proof used in a theorem: no more Fermat statements like “the details are omitted due to lack of space”
- access to all the source code is not just necessary to reproduce, it is also useful to evolve and modify, to build new experiments from the old ones
Why Open Source?

Having access to (all) the source of (all) the code used in an experiment is important:

- even the simplest experiments depend on a wealth of components and configuration options
- source code is like the proof used in a theorem: no more Fermat statements like “the details are omitted due to lack of space”
- access to all the source code is not just necessary to reproduce, it is also useful to evolve and modify, to build new experiments from the old ones

For science, and industry ... Free and Open Source Software is the best choice!
Outline

1. The scientific method
2. Software is Our Knowledge
3. The state of Software reproducibility
4. Software is Fragile
5. Preserving digital knowledge
A fundamental question

How are we doing, regarding reproducibility, in *Software*?
A fundamental question

How are we doing, regarding reproducibility, in *Software*?

The case of Computer Systems Research

A field with Computer experts ... we have high expectations!
Christian Collberg set out to check them.
A fundamental question

How are we doing, regarding reproducibility, in *Software*?

The case of Computer Systems Research

A field with Computer experts ... we have high expectations!
Christian Collberg set out to check them.

Measuring Reproducibility in Computer Systems Research

Long and detailed technical report, March 2014
http://reproducibility.cs.arizona.edu/v1/tr.pdf
Collberg’s report from the trenches

Analysis of 613 papers

- 8 ACM conferences: ASPLOS’12, CCS’12, OOPSLA’12, OSDI’12, PLDI’12, SIGMOD’12, SOSP’11, VLDB’12
- 5 journals: TACO’9, TISSEC’15, TOCS’30, TODS’37, TOPLAS’34

all very practical oriented

The basic question

- can we get the code to build and run?
Collberg’s report from the trenches

Analysis of 613 papers

- 8 ACM conferences: ASPLOS’12, CCS’12, OOPSLA’12, OSDI’12, PLDI’12, SIGMOD’12, SOSP’11, VLDB’12
- 5 journals: TACO'9, TISSEC’15, TOCS’30, TODS’37, TOPLAS’34

all very practical oriented

The basic question

- can we get the code to build and run?
The result

That's a whopping 81% of non reproducible works!
That’s a whopping 81% of non reproducible works!
Many issues, nice anecdotes, and it finally boils down to

- Availability
- Traceability
- Environment
- Automation
- Documentation
- Understanding (Open Source)

The reasons (or, “the dog ate my program”)
Many issues, nice anecdotes, and it finally boils down to

- Availability
- Traceability
- Environment
- Automation
- Documentation
- Understanding (Open Source)

The first two are actually important software preservation issues:
yes, code can be destroyed, and we can loose trace of it!
1. The Scientific Method
2. Software is Our Knowledge
3. The state of Software reproducibility
4. Software is Fragile
5. Preserving digital knowledge
Like all digital information, software is fragile.

An example is worth a thousand words...
Inconsiderate or malicious loss of code

The Year 2000 Bug ... uncovered an inconvenient truth

in 1999, an estimated 40% of companies had either lost, or thrown away the original source code for their systems!
Inconsiderate or malicious loss of code

The Year 2000 Bug … uncovered an inconvenient truth

In 1999, an estimated 40% of companies had either lost, or thrown away the original source code for their systems!

Murder in the Amazon cloud

The demise of Code Spaces at the hands of an attacker shows that, in the cloud, off-site backups and separation of services could be key to survival

InfoWorld | Jun 23, 2014
Inconsiderate or malicious loss of code

The Year 2000 Bug ... uncovered an inconvenient truth

in 1999, an estimated 40% of companies had either **lost**, or **thrown away** the original source code for their systems!

CodeSpaces: source code hosting, 2007-2014

Murder in the Amazon cloud

The demise of Code Spaces at the hands of an attacker shows that, in the cloud, off-site backups and separation of services could be key to survival

Yes, for *seven years* all seemed ok.
Inconsiderate or malicious loss of code

The Year 2000 Bug ... uncovered an inconvenient truth

in 1999, an estimated 40% of companies had either *lost*, or *thrown away* the original source code for their systems!

Murder in the Amazon cloud

The demise of Code Spaces at the hands of an attacker shows that, in the cloud, off-site backups and separation of services could be key to survival

Yes, for *seven years* all seemed ok.
No, they did not recover the data.
A Change to Google Code Download Service

Posted: Monday, May 20, 2013

Project Hosting on Google Code provides a free collaborative development environment for open source projects. Each project comes with its own member controls, Subversion/Mercurial/Git repository, issue tracker, wiki pages, and downloads service.

Downloads were implemented by Project Hosting on Google Code to enable open source projects to make their files available for public download. Unfortunately, downloads have become a source of abuse with a significant increase in incidents recently. Due to this increasing misuse of the service and a desire to keep our community safe and secure, we are deprecating downloads.

Starting today, existing projects that do not have any downloads and all new projects will not have the ability to create downloads. Existing projects with downloads will see no visible changes until January 14, 2014 and will no longer have the ability to create new downloads starting on January 15, 2014. All existing downloads in these projects will continue to be accessible for the foreseeable future.

If your project is using downloads to host and distribute files and has a need to periodically create new downloads, we recommend you move your downloads to an alternate service like Google Drive before January 15, 2014. If you choose to move your files to Google Drive, check out our help article.

By Google Project Hosting
When we started the Google Code project hosting service in 2006, the world of project hosting was limited. We were worried about reliability and stagnation, so we took action by giving the open source community another option to choose from. Since then, we’ve seen a wide variety of better project hosting services such as GitHub and Bitbucket bloom. Many projects moved away from Google Code to those other systems. To meet developers where they are, we ourselves migrated nearly a thousand of our own open source projects from Google Code to GitHub.

As developers migrated away from Google Code, a growing share of the remaining projects were spam or abuse. Lately, the administrative load has consisted almost exclusively of abuse management. After profiling non-abusive activity on Google Code, it has become clear to us that the service simply isn’t needed anymore.

Beginning today, we have disabled new project creation on Google Code. We will be shutting down the service about 10 months from now on January 25th, 2016. Below, we provide links to migration tools designed to help you move your projects off of Google Code. We will also make ourselves available over the next three months to those projects that need help migrating from Google Code to other hosts.

- March 12, 2015 - New project creation disabled.
- August 24, 2015 - The site goes read-only. You can still checkout/view project source, issues, and wikis.
- January 25, 2016 - The project hosting service is closed. You will be able to download a tarball of project source, issues, and wikis. These tarballs will be available throughout the rest of 2016.

Google will continue to provide Git and Gerrit hosting for certain projects like Android and Chrome. We will also continue maintaining our mirrors of projects like Eclipse, kernel.org and others.
Disruption of the web of reference

Web links are not permanent (even permalinks)

there is no general guarantee that a URL which at one time points to a given object continues to do so 404

T. Berners-Lee et al. RFC 1738.
Disruption of the web of reference

Web links are not permanent (even permalinks)

> there is no general guarantee that a URL which at one time points to a given object continues to do so

T. Berners-Lee et al. RFC 1738.

URLs used in articles decay!

Analysis of IEEE Computer (Computer), and the Communications of the ACM (CACM): 1995-1999

- **the half-life of a referenced URL is approximately 4 years**
 from its publication date

1. The scientific method
2. Software is Our Knowledge
3. The state of Software reproducibility
4. Software is Fragile
5. Preserving digital knowledge
Preservation of digital information is on the rise

A wealth of initiatives around us

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalist</td>
<td>the Web at archive.org; National Digital Information Infrastructure and Preservation Program (NDIIPP, USA); ...</td>
</tr>
<tr>
<td>Culture</td>
<td>books, music, video: INA (FR); http://www.nationalarchives.gov.uk (UK) ...</td>
</tr>
<tr>
<td>Social Networks</td>
<td>Twitter is archived by the Library of Congress!</td>
</tr>
<tr>
<td>Libraries and Scholarly Work</td>
<td>ArXiv; Digital Preservation Network http://www.dpn.org/; ...</td>
</tr>
<tr>
<td>Scientific Data</td>
<td>CINES (FR); Zenodo/OpenAire (CERN); ...</td>
</tr>
</tbody>
</table>
Preservation of digital information is on the rise

A wealth of initiatives around us

<table>
<thead>
<tr>
<th>category</th>
<th>examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>generalist</td>
<td>the Web at archive.org; National Digital Information Infrastructure and Preservation Program (NDIIPP, USA); ...</td>
</tr>
<tr>
<td>culture</td>
<td>books, music, video: INA (FR); http://www.nationalarchives.gov.uk (UK) ...</td>
</tr>
<tr>
<td>social networks</td>
<td>Twitter is archived by the Library of Congress!</td>
</tr>
<tr>
<td>libraries and scholarly work</td>
<td>ArXiv; Digital Preservation Network http://www.dpn.org/; ...</td>
</tr>
<tr>
<td>scientific data</td>
<td>CINES (FR); Zenodo/OpenAire (CERN); ...</td>
</tr>
</tbody>
</table>

And yet, up to now...

software is *largely ignored* as an object of preservation...

computer scientists are *absent* from the preservation landscape!
Preservation of digital information is on the rise

A wealth of initiatives around us

generalist the Web at archive.org; National Digital Information Infrastructure and Preservation Program (NDIIPP, USA); ...
culture books, music, video: INA (FR); http://www.nationalarchives.gov.uk (UK) ...
social networks Twitter is archived by the Library of Congress!
libraries and scholarly work ArXiv; Digital Preservation Network http://www.dpn.org/; ...
scientific data CINES (FR); Zenodo/OpenAire (CERN); ...

And yet, up to now...

software is largely ignored as an object of preservation...
computer scientists are absent from the preservation landscape!

It’s time to change all this!
Unlike for books or movies, there is a big difference between *using* and *understanding* a piece of software.

Using software

Requires an executable, and access to the *execution environment*.
Unlike for books or movies, there is a big difference between using and understanding a piece of software.

Using software
Requires an executable, and access to the execution environment

Understanding software
Requires access to the source code:

> The source code for a work means the preferred form of the work for making modifications to it.

— GNU General Public Licence, version 2
Unlike for books or movies, there is a big difference between *using* and *understanding* a piece of software.

Using software
Requires an executable, and access to the *execution environment*

Understanding software
Requires access to the *source code*:

> *The source code for a work means the preferred form of the work for making modifications to it.*

— *GNU General Public Licence, version 2*

For reproducibility, we need *both!*
Preserving software is more complex than archiving books or scientific articles.

Interdependencies: a program relies on other software as well as specific hardware components to be executed; so does our understanding of its functionality.
Preserving software is more complex than archiving books or scientific articles.

Interdependencies a program relies on other software as well as specific hardware components to be executed; so does our understanding of its functionality.

Evolution software is a live object: its detailed history contains key knowledge.
Preserving software is **more complex** than archiving books or scientific articles.

Interdependencies a program relies on other software as well as specific hardware components to be executed; so does our understanding of its functionality.

Evolution software is a *live object*: its detailed history contains key knowledge.

To preserve software it is *not enough* to mimic processes that were intended to archive books, scientific articles or data.
The Knowledge Conservancy Magic Triangle

Open Access Repositories

Open Data Sets Repositories

Open Source Repositories

articles ArXiv, HAL, ...
data Zenodo, OpenAire, ...
software is the next to come, and is our mission
Preservation is the foundation of all reproductibility efforts

We all must do our best to

- preserve and make accessible scientific articles and data
- preserve and make accessible the software
Conclusions

Preservation is the foundation of all reproducibility efforts

We all must do our best to

- preserve and make accessible scientific articles and data
- preserve and make accessible the software

Because software embodies our scientific and technical knowledge
Conclusions

Preservation is the foundation of all reproductibility efforts.

We all must do our best to:

- preserve and make accessible scientific articles and data
- preserve and make accessible the software

Because software embodies our scientific and technical knowledge.

Conoscere è saper fare.

Giambattista Vico, 1668–1744, Naples
Conclusions

Preservation is the foundation of all reproducibility efforts

We all must do our best to

- preserve and make accessible scientific articles and data
- preserve and make accessible the software

Because software embodies our scientific and technical knowledge

Conoscere è saper fare.

Giambattista Vico, 1668–1744, Naples

Questions?