Rust Analytics for Software Heritage
Challenges and results

Tommaso Fontana, Sebastiano Vigna, Stefano Zacchirolı

Partially supported by project SERICS (PE00000014) under the NRRP MUR program funded by the EU - NGEU, and by project ANR COREGRAPHIE, grant ANR-20-CE23-0002 of the French Agence Nationale de la Recherche
The Laboratory for Web Algorithmics
The Laboratory for Web Algorithmics

• A laboratory established in the late 90s at the Università degli Studi di Milano to attack specific algorithmic problems related to the web
The Laboratory for Web Algorithmics

- A laboratory established in the late 90s at the Università degli Studi di Milano to attack specific algorithmic problems related to the web
- Expanded later into the study of social networks
The Laboratory for Web Algorithmics

- A laboratory established in the late 90s at the Università degli Studi di Milano to attack specific algorithmic problems related to the web
- Expanded later into the study of social networks
- Besides scientific publications, several open-source Java projects
The Laboratory for Web Algorithmics

- A laboratory established in the late 90s at the Università degli Studi di Milano to attack specific algorithmic problems related to the web
- Expanded later into the study of social networks
- Besides scientific publications, several open-source Java projects
- For example, fastutil is currently used by 775 open-source Java projects in the Maven Central repository
The Laboratory for Web Algorithmics

• A laboratory established in the late 90s at the Università degli Studi di Milano to attack specific algorithmic problems related to the web

• Expanded later into the study of social networks

• Besides scientific publications, several open-source Java projects

• For example, fastutil is currently used by 775 open-source Java projects in the Maven Central repository

• We aim at strong theoretical results that have an actual impact on the industry
The Laboratory for Web Algorithmics

- A laboratory established in the late 90s at the Università degli Studi di Milano to attack specific algorithmic problems related to the web
- Expanded later into the study of social networks
- Besides scientific publications, several open-source Java projects
 - For example, fastutil is currently used by 775 open-source Java projects in the Maven Central repository
- We aim at strong theoretical results that have an actual impact on the industry
- We also harvest data such as web snapshots and make them publicly available for researchers
Graph Analytics at Scale
Graph Analytics at Scale

- Today we found very large graphs all over the place
Graph Analytics at Scale

• Today we found very large graphs all over the place
Graph Analytics at Scale

- Today we found very large graphs all over the place
- Web snapshots, social networks, biological graphs, …
Graph Analytics at Scale

- Today we found very large graphs all over the place
- Web snapshots, social networks, biological graphs, …
Graph Analytics at Scale

• Today we found very large graphs all over the place
• Web snapshots, social networks, biological graphs, …
Graph Analytics at Scale

- Today we found very large graphs all over the place
- Web snapshots, social networks, biological graphs, …
- Very large graphs require new approaches
Graph Analytics at Scale

• Today we found very large graphs all over the place
• Web snapshots, social networks, biological graphs, …
• Very large graphs require new approaches
• Standard representations in main memory are either impossible (graph too large) or impossibly expensive (many TB of core memory)
Graph Analytics at Scale

- Today we found very large graphs all over the place
- Web snapshots, social networks, biological graphs, …
- Very large graphs require new approaches
- Standard representations in main memory are either impossible (graph too large) or impossibly expensive (many TB of core memory)
- Distributed approaches spend an impossible amount of time distributing data among nodes
Graph Analytics at Scale

• Today we found very large graphs all over the place
• Web snapshots, social networks, biological graphs, …
• Very large graphs require new approaches
• Standard representations in main memory are either impossible (graph too large) or impossibly expensive (many TB of core memory)
• Distributed approaches spend an impossible amount of time distributing data among nodes
• What can we do?
The WebGraph Framework
The WebGraph Framework

• An open-source framework for data analytics on very large graphs
The WebGraph Framework

• An open-source framework for data analytics on very large graphs
• One of the most long-lived projects of this kind (>20 years!)
The WebGraph Framework

- An open-source framework for data analytics on very large graphs
- One of the most long-lived projects of this kind (>20 years!)
- Hundreds of publications in major conferences and journals using it (>1500 references)
The WebGraph Framework

• An open-source framework for data analytics on very large graphs
• One of the most long-lived projects of this kind (>20 years!)
• Hundreds of publications in major conferences and journals using it (>1500 references)
• In 2011 news went around the world: Facebook had four degrees of separation
The WebGraph Framework

• An open-source framework for data analytics on very large graphs
• One of the most long-lived projects of this kind (>20 years!)
• Hundreds of publications in major conferences and journals using it (>1500 references)
• In 2011 news went around the world: Facebook had four degrees of separation
The WebGraph Framework

• An open-source framework for data analytics on very large graphs
• One of the most long-lived projects of this kind (>20 years!)
• Hundreds of publications in major conferences and journals using it (>1500 references)
• In 2011 news went around the world: Facebook had four degrees of separation
The WebGraph Framework

• An open-source framework for data analytics on very large graphs
• One of the most long-lived projects of this kind (>20 years!)
• Hundreds of publications in major conferences and journals using it (>1500 references)
• In 2011 news went around the world: Facebook had four degrees of separation
• The measurement was performed at Facebook in collaboration with our group using WebGraph (at that time, 700M nodes,
The WebGraph Framework

- An open-source framework for data analytics on very large graphs
- One of the most long-lived projects of this kind (>20 years!)
- Hundreds of publications in major conferences and journals using it (>1500 references)
- In 2011 news went around the world: Facebook had four degrees of separation
- The measurement was performed at Facebook in collaboration with our group using WebGraph (at that time, 700M nodes,
- Note: the data structures currently used by Facebook for storing the friendship graph were suggested by us following this interaction
Software Heritage History Graph
Software Heritage History Graph

- One of the largest graphs of human activity available
Software Heritage History Graph

- One of the largest graphs of human activity available
- 34 billion nodes, 517 billion arcs (September 2023)
Software Heritage History Graph

- One of the largest graphs of human activity available
- 34 billion nodes, 517 billion arcs (September 2023)
- Constantly increasing
Software Heritage History Graph

- One of the largest graphs of human activity available
- 34 billion nodes, 517 billion arcs (September 2023)
- Constantly increasing
- Represented by WebGraph in 176GB instead of 4TB!
Software Heritage History Graph

- One of the largest graphs of human activity available
- 34 billion nodes, 517 billion arcs (September 2023)
- Constantly increasing
- Represented by WebGraph in 176GB instead of 4TB!
- The current WebGraph-based pipeline for graph analytics was born out of a collaboration between Inria and the Università degli Studi di Milano
Software Heritage History Graph

• One of the largest graphs of human activity available
• 34 billion nodes, 517 billion arcs (September 2023)
• Constantly increasing

• Represented by WebGraph in 176GB instead of 4TB!

• The current WebGraph-based pipeline for graph analytics was born out of a collaboration between Inria and the Università degli Studi di Milano

• Storing explicitly the graph makes it possible to perform provenance analysis, plagiarism detection, clone detection, etc., at an unprecedented scale
Software Heritage History Graph

- One of the largest graphs of human activity available
- 34 billion nodes, 517 billion arcs (September 2023)
- Constantly increasing
- Represented by WebGraph in 176GB instead of 4TB!
- The current WebGraph-based pipeline for graph analytics was born out of a collaboration between Inria and the Università degli Studi di Milano
- Storing explicitly the graph makes it possible to perform provenance analysis, plagiarism detection, clone detection, etc., at an unprecedented scale
- Still, Java started to get in the way
Why Rust
Why Rust

• A new, high-performance, safe language
Why Rust

• A new, high-performance, safe language
• Memory safe (as Java), but with zero-cost abstractions
Why Rust

• A new, high-performance, safe language
• Memory safe (as Java), but with zero-cost abstractions
• Arrays as large as memory allows
Why Rust

- A new, high-performance, safe language
- Memory safe (as Java), but with zero-cost abstractions
- Arrays as large as memory allows
- Fine-grained access to OS facilities
Why Rust

• A new, high-performance, safe language
• Memory safe (as Java), but with zero-cost abstractions
• Arrays as large as memory allows
• Fine-grained access to OS facilities
• Modern, functional-inspired idiomatic programming
Why Rust

• A new, high-performance, safe language
• Memory safe (as Java), but with zero-cost abstractions
• Arrays as large as memory allows
• Fine-grained access to OS facilities
• Modern, functional-inspired idiomatic programming
• First language after C to be integrated in the Linux kernel
Why Rust

- A new, high-performance, safe language
- Memory safe (as Java), but with zero-cost abstractions
- Arrays as large as memory allows
- Fine-grained access to OS facilities
- Modern, functional-inspired idiomatic programming
- First language after C to be integrated in the Linux kernel
- Rapidly adopted by the industry (Google, Facebook, …)
Results
Results

- Collaboration between Inria / Télécom Paris and the Università degli Studi di Milano
Results

• Collaboration between Inria / Télécom Paris and the Università degli Studi di Milano

• > 100,000 committed lines of code in about eight months, > 50,000 present
Results

- Collaboration between Inria / Télécom Paris and the Università degli Studi di Milano
- > 100,000 committed lines of code in about eight months, > 50,000 present
- New graph-analytics pipeline (still some steps to replace)
Results

• Collaboration between Inria / Télécom Paris and the Università degli Studi di Milano

• > 100,000 committed lines of code in about eight months, > 50,000 present

• New graph-analytics pipeline (still some steps to replace)

• Open to new compression models (hardwired in the Java version)
Results

• Collaboration between Inria / Télécom Paris and the Università degli Studi di Milano

• > 100,000 committed lines of code in about eight months, > 50,000 present

• New graph-analytics pipeline (still some steps to replace)

• Open to new compression models (hardwired in the Java version)

• More predictable performance, and almost three times faster!
Results

• Collaboration between Inria / Télécom Paris and the Università degli Studi di Milano

• > 100,000 committed lines of code in about eight months, > 50,000 present

• New graph-analytics pipeline (still some steps to replace)

• Open to new compression models (hardwired in the Java version)

• More predictable performance, and almost three times faster!

• Many satellite open-source projects released to the community
Results

• Collaboration between Inria / Télécom Paris and the Università degli Studi di Milano

• > 100,000 committed lines of code in about eight months, > 50,000 present

• New graph-analytics pipeline (still some steps to replace)

• Open to new compression models (hardwired in the Java version)

• More predictable performance, and almost three times faster!

• Many satellite open-source projects released to the community

• Ready for the future growth of Software Heritage