

The Virtual AGC ProjectThe Virtual AGC Project

Founded: Ron Burkey <info@sandroid.org>Founded: Ron Burkey <info@sandroid.org>
When: 2003When: 2003

Assisted since then by: MultitudesAssisted since then by: Multitudes

Website: http://www.ibiblio.org/apollo/Website: http://www.ibiblio.org/apollo/
Software: Software: https://github.com/virtualagc/virtualagchttps://github.com/virtualagc/virtualagc
Scans: https://archive.org/details/virtualagcprojectScans: https://archive.org/details/virtualagcproject

^
I am Ron Burkey,
and I founded the Virtual AGC Project.
One evening in April of 2003,
while watching the movie Apollo 13,
I was struck by the idea of sharing
what I thought of as the “Apollo Experience”.
To me, that meant running the original Apollo
flight-computer software on personal computers.
“Preserving” the software didn’t occur to me,
because I IMAGINED finding it already online.

https://github.com/virtualagc/virtualagc

Computers, Spacecraft, Computers, Spacecraft,
and Saturn Vand Saturn V

^
But I was wrong about that.
Nowadays, preserving software for the various
onboard computers of the Apollo and Gemini
Missions from the 1960’s & 70’s
is a big deal for me.

Computers, Spacecraft, Computers, Spacecraft,
and Saturn Vand Saturn V

^
Today I’ll concentrate on
the Apollo Guidance Computer, or AGC.
One was installed in the Apollo Command Module
and another in the Lunar Module,
or as it was originally called, the LEM.
Later on I’ll have a few remarks
about the Saturn V’s computer as well.
The AGC was developed by MIT’s
Instrumentation Laboratory,
today known as Draper Labs,
and manufactured by the Raytheon Corporation.
Because of time, I’ll have to ignore the many
interesting details of the AGC and its software,
so I’ll talk almost entirely
about PRESERVATION of the software.
But given that there were 20 Apollo missions,
more or less, with separate software
for the LEM vs the Command Module, that’s still
a LOT of software preservation to discuss.

AGC and DSKYAGC and DSKY

~ 62~ 62××3232××15 cm, 32 kg ~ 2215 cm, 32 kg ~ 22×20×20×18 cm, 8 kg×18 cm, 8 kg

^
Here, on the left, we see
the interior of an AGC.
On the right, we see the astronauts’ interface
to the AGC, the Display Keyboard, or DSKY.

AGC CapabilitiesAGC Capabilities
and Softwareand Software

● 1’s-complement arithmetic: …, -1, -0, +0, +1, +2, …1’s-complement arithmetic: …, -1, -0, +0, +1, +2, …
● ~ 85 kHz clock speed~ 85 kHz clock speed
● ~ 78 kB read-only memory, in 36 banks~ 78 kB read-only memory, in 36 banks
● ~ 4 kB read-write memory, in 8 banks~ 4 kB read-write memory, in 8 banks
● No stackNo stack
● Ferrite-core based memory rather than semiconductorFerrite-core based memory rather than semiconductor
● 15-bit word-size, plus 1 parity bit15-bit word-size, plus 1 parity bit
● Intermixed assembly language & interpreter codeIntermixed assembly language & interpreter code
● Real-time, multi-tasking, fault-tolerantReal-time, multi-tasking, fault-tolerant

^
By modern standards, the AGC had
a pretty novel design.
It was very slow and had a very small memory.
On the other hand, the real-time,
multi-tasking, fault-tolerant
executive software was quite sophisticated,
given the limited hardware resources available.

Tidal Wave of AGC SoftwareTidal Wave of AGC Software

^
In fact, nearly 2300 AGC software versions
have been identified!
We’re looking at their evolutionary tree.
As far as I know, development began
with software called ECLIPSE in 1963.
Eventually, Command Modules were loaded with
software having names like CORONA, SUNSPOT,
SOLARIUM, SUNDISK, COLOSSUS,
COMANCHE, ARTEMIS, SKYLARK.
LEMs, meanwhile, had
SUNBURST, SUNDANCE, or LUMINARY.
And there were ground-test versions,
such as SUNDIAL and AURORA.
And engineering versions
like SHEPATIN, ZERLINA, and DIANA.

The Holy Grail:The Holy Grail:
AGC-Related Project GoalsAGC-Related Project Goals

● Modern assemblerModern assembler
● Modern CPU emulatorModern CPU emulator
● Spaceflight-simulator integrationSpaceflight-simulator integration
● Source code for Source code for allall versions ... versions ...
● … … or at least all or at least all flownflown missions missions
● … … plus Apollo 1plus Apollo 1
● AllAll relevant documentation relevant documentation

^
In my opinion, software preservation is about
more than archiving source code.
It’s about the documentation needed to
understand the design, use,
and evolution of the software.
It’s about having access to software-
development tools yourself.
Which in this case means being able
to assemble the source code into an executable.
It’s about being able to run the executable ...
and to do so in the intended context.
Which in this case means to fly simulated
but otherwise authentic Apollo missions.
How do you get the source material
in the first place?
In a word - beg!
And you have to know who to beg, and how to beg.

Method 1: Starting FromMethod 1: Starting From
an Original Hardcopyan Original Hardcopy

SourceSource

OctalsOctals

^
But at the moment, I’d prefer to talk about
what happens AFTER we have
the source materials in hand.
Understand first that nobody EVER hands us
machine-readable source code.
We have to come up with that ourselves.
Depending on the situation, so far
we’ve used 3 different methods to do that.
Let’s start with the most-common scenario.
It starts by getting access to a hard-copy
of a so-called “assembly listing”.

Method 1: Starting FromMethod 1: Starting From
an Original Hardcopyan Original Hardcopy

SourceSource

OctalsOctals

^
That’s a printout made by the Apollo developers
when THEY assembled the source code
50 or 60 years ago.
It’s usually a stack of 11 inch by 14 inch
fan-fold paper a couple of inches thick.

Method 1: Starting FromMethod 1: Starting From
an Original Hardcopyan Original Hardcopy

SourceSource

OctalsOctals

^
About 1500 pages are devoted to the source code

Method 1: Starting FromMethod 1: Starting From
an Original Hardcopyan Original Hardcopy

SourceSource

OctalsOctals

^
and about 150 pages are a so-called
“octal listing” of the executable
produced by the assembler.

Method 1 Continued … Method 1 Continued …
DigitizationDigitization

oror

^
How does the hard-copy turn into a scan?
You CAN use a commercial service ...
if you can afford it ...
and if you can trust the service to handle
an irreplaceable historical printout.

Method 1 Continued … Method 1 Continued …
DigitizationDigitization

oror

^
Or ... you can use a digital camera.
I like hanging the printout vertically,
and triggering the camera by remote control.
But know how to properly configure
the camera’s white balance settings!
Which unfortunately, I didn’t.

Method 1 Continued … Method 1 Continued …
DigitizationDigitization

oror

^
Nowadays, a book scanner may be better.
But there’s a trick involved ...

Method 1 Continued … Method 1 Continued …
DigitizationDigitization

oror

^
because the best path for fan-fold paper is
UNDER the scanner, which normally
would be sitting directly on the table.

Method 1 Continued … Method 1 Continued …
DigitizationDigitization

oror

^
I use a homemade platform that leaves
a gap between the scanner and the table.

Method 1 Continued … Method 1 Continued …
DigitizationDigitization

oror

^
Also, a frame or registration marks
may be useful for software that post-processes
the images after you’ve scanned them.
Although ... these days, with the right setup,
your smartphone’s camera may be even better
than a book scanner in some ways.

Method 1 Continued …Method 1 Continued …
Optical Character Recognition (OCR)?Optical Character Recognition (OCR)?

^
Do we use optical-character recognition
software to turn the scans into
machine-readable source-code files?

Method 1 Continued …Method 1 Continued …
Optical Character Recognition (OCR)?Optical Character Recognition (OCR)?

No CR!No CR!

^
No, we do not!
My slogan ... “OCR is no CR”.
Why?

Method 1 Continued …Method 1 Continued …
Optical Character Recognition (OCR)?Optical Character Recognition (OCR)?

Dreadful 60’s-era printersDreadful 60’s-era printers
50 years of fading text, rips, folds, and stains50 years of fading text, rips, folds, and stains

Text-obscuring horizontal green bars or black linesText-obscuring horizontal green bars or black lines
OCR software’s dictionaries are of no useOCR software’s dictionaries are of no use

^
Well, OCR works best when you start with
hard-copy having very good print quality.
The printouts we work with seldom have that.
Perhaps the worst thing is that modern OCR
software seems to rely heavily on dictionaries
specific to the languages being recognized.
It’s like auto-correct on your phone.
And you know how well that works.
Imagine how well it would work
if your auto-correction dictionary
was for the wrong language!

 Method 1 Continued …Method 1 Continued …
TranscriptionTranscription

TranscribeTranscribe
source codesource code

TranscribeTranscribe
octal listingoctal listing

^
INSTEAD, a team of volunteers MANUALLY
transcribes the source code,
and SEPARATELY transcribes the octal listing.

 Method 1 Continued …Method 1 Continued …
TranscriptionTranscription

SourceSource OctalsOctals

AssembleAssemble
the Sourcethe Source

Compare the Compare the
ExecutablesExecutables

Correct theCorrect the
Transcription(s)Transcription(s)

TranscriptionsTranscriptions

^
We then process the transcribed source code
using our modern assembler, and compare
the executable produced by the assembler
to the transcribed octal listing.
If there are mismatches,
we correct the transcription.
And we just keep doing that
until the executable is perfect.

 Method 1 Continued …Method 1 Continued …
TranscriptionTranscription
1) Transcribe Transcribe

source codesource code

2)2) Transcribe Transcribe
octal listingoctal listing

3)3) Proofread like Proofread like
crazy!crazy!

4)4) AssembleAssemble

5)5) DebugDebug

6)6) Repeat until Repeat until
assembly assembly
matches octal matches octal
listinglisting

SourceSource

OctalsOctals

^
Here’s a summary of the entire entire process.
Notice that syntax highlighting for source code
is a very convenient byproduct.

 Method 1 Continued …Method 1 Continued …
TranscriptionTranscription
1) Transcribe Transcribe

source codesource code

2)2) Transcribe Transcribe
octal listingoctal listing

3)3) Proofread like Proofread like
crazy!crazy!

4)4) AssembleAssemble

5)5) DebugDebug

6)6) Repeat until Repeat until
assembly assembly
matches octal matches octal
listinglisting

SourceSource

OctalsOctals

^
This process insures that
INSTRUCTIONS are transcribed correctly.

 Method 1 Continued …Method 1 Continued …
TranscriptionTranscription
1) Transcribe Transcribe

source codesource code

2)2) Transcribe Transcribe
octal listingoctal listing

3)3) Proofread like Proofread like
crazy!crazy!

4)4) AssembleAssemble

5)5) DebugDebug

6)6) Repeat until Repeat until
assembly assembly
matches octal matches octal
listinglisting

SourceSource

OctalsOctals

^
But what about program comments,
which are discarded by the assembler, and thus
NOT cross-checked by the assembly process?
Typos in program comments may seem benign,
but we’d still like some kind of
extra proofing magic to eliminate them.

Method 1 Continued …Method 1 Continued …
Proofing Magic: Colorize!Proofing Magic: Colorize!

1)1)Don’t use OCR to extract text.Don’t use OCR to extract text.
2)2)Instead use OCR to overlay the Instead use OCR to overlay the

transcribed text in transcribed text in colorcolor atop the atop the
scan.scan.

3)3)Anywhere there’s color after that Anywhere there’s color after that
… double check!… double check!

^
I’ve already claimed that OCR isn’t too useful
for extracting source code from a scan.
But it’s not entirely worthless for proofing.
By combining a scan, an OCR of the scan, and
a transcription of the scan, there’s a way
to overlay a colorized version
of the transcription directly
atop the black text of the scanned image.

Method 1 Continued …Method 1 Continued …
Proofing Magic: Colorize!Proofing Magic: Colorize!

1)1)Don’t use OCR to extract text.Don’t use OCR to extract text.
2)2)Instead use OCR to overlay the Instead use OCR to overlay the

transcribed text in transcribed text in colorcolor atop the atop the
scan.scan.

3)3)Anywhere there’s color after that Anywhere there’s color after that
… double check!… double check!

^
Wherever the text remains mostly black,
it’s almost certainly correct!

Method 1 Continued …Method 1 Continued …
Proofing Magic: Colorize!Proofing Magic: Colorize!

1)1)Don’t use OCR to extract text.Don’t use OCR to extract text.
2)2)Instead use OCR to overlay the Instead use OCR to overlay the

transcribed text in transcribed text in colorcolor atop the atop the
scan.scan.

3)3)Anywhere there’s color after that Anywhere there’s color after that
… double check!… double check!

^
But ... wherever there’s noticeable color,
there MAY be a transcription error.
In other words, you just
double-check stuff that's in color!
By the way, up close, the colors visually
POP OUT more than it may seem in these slides.

Method 1 Continued …Method 1 Continued …
Proofing Magic: Colorize!Proofing Magic: Colorize!

1)1)Don’t use OCR to extract text.Don’t use OCR to extract text.
2)2)Instead use OCR to overlay the Instead use OCR to overlay the

transcribed text in transcribed text in colorcolor atop the atop the
scan.scan.

3)3)Anywhere there’s color after that Anywhere there’s color after that
… double check!… double check!

^
The best example here is
the WITH at lower right.
It was PROBABLY incorrectly transcribed
as W T I H.

Method 1 Continued …Method 1 Continued …
Proofing Magic: Compare!Proofing Magic: Compare!

^
Another thing ...
When there’s transcribed code for
multiple similar versions of the software,
there are tools for comparing
two or more versions side by side.
Of course, differences MAY be
valid version-related changes.
But they may also be transcription errors.
Two independent software transcriptions,
aren’t likely to have transcription errors
in identical locations.

Method 1 Continued …Method 1 Continued …
Proofing Magic: Collate!Proofing Magic: Collate!

Original Symbol Original Symbol
Table (1969)Table (1969) Modern Symbol Modern Symbol

Table (2022)Table (2022)

^
Yet another sometimes-difficult-to-detect
problem is when a symbol is misspelled
CONSISTENTLY throughout an entire transcription.
OUR stereotypical problem is
the symbol “POOH” and its friends.
Is it P-Oh-Oh-H or is it P-Zero-Zero-H?
Comparing the sorted symbol table
from the original assembly listing
versus the one output by our modern assembler
is a powerful way to find
such misspelled symbols ...
... IF the layouts of the tables and
the sorting orders of the symbols are the same.
Which can be a very tricky problem!
Now ... recall that I said we have three very
different methods of acquiring AGC source code.
That’s all I have to say about the 1st method,
so let’s move on the 2nd.

Method 2: Starting From Method 2: Starting From
Physical Memory ModulesPhysical Memory Modules

^
Suppose you DON’T have an Apollo-era
printout to work with.
Sometimes museums or collectors own
physical AGC rope memory modules.
These are cartridges of read-only memory,
up to 6 of them per AGC,
that hold the executable software.

Method 2: Starting From Method 2: Starting From
Physical Memory ModulesPhysical Memory Modules

^
Sometimes those owners can be
persuaded to give us access to them.
We’re able to dump the contents of the modules,
creating an octal listing of the executable.
The modules have built-in parity bits
and check-sums,
for extra confidence that dumps are valid.

Method 2: Starting From Method 2: Starting From
Physical Memory ModulesPhysical Memory Modules

^
We can disassemble such a dumped octal listing
to get rough, imperfect source code
for that AGC software version.

Method 2: Starting From Method 2: Starting From
Physical Memory ModulesPhysical Memory Modules

^
Finally, the imperfect source code often
can be perfected by comparing it to
similar software versions and importing chunks
of source code from those similar versions.

Method 3: Starting From Method 3: Starting From
Software-Change Paper TrailSoftware-Change Paper Trail

Requirements:Requirements:
● Program listing(s) for very similar versions; Program listing(s) for very similar versions; andand
● Complete documentation of changes; Complete documentation of changes; andand
● Knowledge of the expected checksums.Knowledge of the expected checksums.

^
But what if there’s NEITHER a printout
NOR a physical memory module?
Under the rare conditions listed in this slide,
an AGC software version can
SOMETIMES be reconstructed anyway.
First, you clone the source code for
the software version that you THINK
is closest to the one you want to reconstruct.
Then, one-by-one, you edit in EACH of
the software changes that are described
in the Apollo-era paper trail.
Mostly, that means pasting code from
a similar AGC version in which you know
that the SAME change had also been made.
Having done all that,
you assemble the edited code.
If the check-sums are as hoped-for,
then success!
For example, the Apollo 10 Command Module
software and the Apollo 14 LEM software
were reconstructed in exactly this way.
As a final check,
you fly the mission in a spaceflight simulator.

Apollo 15 – Lunar ApenninesApollo 15 – Lunar Apennines

^
Speaking of which, our CPU emulator and
our collected AGC software have been integrated
into the ORBITER spaceflight-simulation system
with the NASSP add-on.
That’s N A S S P.
So in Orbiter, Apollo missions use
a fully operational AGC.
We’re looking at a simulated Apollo 15
lunar landing at Hadley Rille.
The landing is just under 14 minutes total,
but we’re only going to see a bit
from the middle, as the LEM swoops down
over the Lunar Apennine Mountains.
For this mission, the LEM’s AGC runs software
known as LUMINARY 210, and specifically it’s
using the subprograms called P63, P64, and P66.
At the moment, P63, “landing maneuver
braking phase”, is running.
Incidentally, the simulation does have
a human pilot, Nik.
But it so happens that the AGC can handle
this lunar landing automatically, so Nik
is basically just observing the action
the same way we are, and occasionally checking
the DSKY at the bottom of the control panel.
The P63 program is now nearing its end,
after which it will automatically transition
to program P64, “landing maneuver approach
phase”, at which point the LEM will pitch over.
But I’m going to end the simulation when that
happens, so we’ll miss the rest of the landing
... and there’s pitch-over.

Virtual AGC ProjectVirtual AGC Project
Achievements Over 2 DecadesAchievements Over 2 Decades

Item 2003 2022

Documents ~100 ~2800

AGC software versions 2 ~33

Fully covered missions (AGC) None! Apollo 4, 5, 6, 8, 9, 10, 11, 15, 16, 17

Partially covered missions (AGC) Apollo 9, 13 Apollo 12, 13, 14

Spaceflight simulation systems None! AGC and AGS integrated into Orbiter with NASSP add-on

Electrical and mechanical drawings 0 ~100K scans

AGS software versions 0 2 (Apollo 11, 12, 15, 16, 17)

LVDC software versions 0 1 (Not complete, not fully developed, mission not flown)

Gemini OBC software versions 0 Debatable

Wish list n/a Apollo 1 AGC, Apollo 7 AGC, LVDC, Gemini OBC, ITAR!

^
A couple of decades has made a big difference
in the amount of publicly available
Apollo flight software and related material.
2 AGC software versions have turned into
over 30, representing the full AGC software
needed for 10 different Apollo missions.
And a couple more missions seem to be
on the way as I speak!
Meanwhile, a mere handful of documents has
turned into nearly 3000.
But the wish list does still contain
some very-significant items.
Now ... that’s all I have about the AGC today,
but I do have some time left over

A Launch VehicleA Launch Vehicle
Digital Computer StoryDigital Computer Story

● Years-long search for code Years-long search for code

^
so let me tell you a story about
the Launch Vehicle Digital Computer, or LVDC.
This is yet another Apollo flight computer
covered by our project,
but different from the AGC.
The story will illustrate a few of the kinds of
preservation-related frustrations we experience.
Realize that the AGC itself couldn’t control
the actions of the Saturn V rocket, mostly.
That job was performed by the LVDC,
developed and manufactured by
IBM’s Federal Services Division.

A Launch VehicleA Launch Vehicle
Digital Computer StoryDigital Computer Story

● Years-long search for code.Years-long search for code.
● U. S. Space & Rocket Center archive told me:U. S. Space & Rocket Center archive told me:

● They had a copy of the softwareThey had a copy of the software
● Because of contract with IBM I couldn’t scan it.Because of contract with IBM I couldn’t scan it.
● But I could transcribe it to paper by hand!But I could transcribe it to paper by hand!

^
At some point, we got word that
the U. S. Space & Rocket Center Archive
had a copy of the software!
But the archive told me that they
couldn’t legally allow me
to digitize the program listing.
If I wanted it, they said,
I’d have to copy it by hand.
Which sounded pretty unpleasant,
but eventually I decided to do it anyway.
So, on my vacation I drove 750 miles
from Dallas, Texas to Huntsville, Alabama.

A Launch VehicleA Launch Vehicle
Digital Computer StoryDigital Computer Story

● Years-long search for codeYears-long search for code
● U. S. Space & Rocket Center archive told me:U. S. Space & Rocket Center archive told me:

● They had a copy of the software … FALSEThey had a copy of the software … FALSE
● Because of contract with IBM I couldn’t scan it.Because of contract with IBM I couldn’t scan it.
● But I could transcribe it to paper by hand!But I could transcribe it to paper by hand!

^
Only to find, once I got there,
that it was a mix-up by the archive!
In fact, they had no LVDC software at all.
Since I happened to be there anyway,
I talked to some of the Museum’s docents
who were Saturn V old-timers.
One of those was an IBM Federal Services
Division manager for LVDC software development,
and he told me some things.

A Launch VehicleA Launch Vehicle
Digital Computer StoryDigital Computer Story

● Years-long search for codeYears-long search for code
● U. S. Space & Rocket Center archive told me:U. S. Space & Rocket Center archive told me:

● They had a copy of the software … FALSEThey had a copy of the software … FALSE
● Because of contract with IBM I couldn’t scan it.Because of contract with IBM I couldn’t scan it.
● But I could transcribe it to paper by hand!But I could transcribe it to paper by hand!

● IBM FSD software manager told me:IBM FSD software manager told me:
● Nobody could possibly have a copyNobody could possibly have a copy
● Software was classifiedSoftware was classified
● Was Was destroyeddestroyed after each mission after each mission
● Would be pointless to run in an emulatorWould be pointless to run in an emulator

^
Nobody could possibly have a copy of the code,
he said, because it was classified.
You didn’t just take classified material
home with you.
Also, he insisted, the source code
was destroyed after each mission.
And finally, he said, my project
was completely worthless,
because the LVDC could never be run
as a simulation anyway without simulating
certain of its peripheral devices too,
something he imagined was impossible.

A Launch VehicleA Launch Vehicle
Digital Computer StoryDigital Computer Story

● Years-long search for codeYears-long search for code
● U. S. Space & Rocket Center archive told me:U. S. Space & Rocket Center archive told me:

● They had a copy of the software … FALSEThey had a copy of the software … FALSE
● Because of contract with IBM I couldn’t scan it.Because of contract with IBM I couldn’t scan it.
● But I could transcribe it to paper by hand!But I could transcribe it to paper by hand!

● IBM FSD software manager told me:IBM FSD software manager told me:
● Nobody could possibly have a copy … FALSENobody could possibly have a copy … FALSE
● Software was classified … FALSESoftware was classified … FALSE
● Was Was destroyeddestroyed after each mission … FALSE after each mission … FALSE
● Would be pointless to run in an emulator … ?Would be pointless to run in an emulator … ?

^
I know NOW that these claims were mostly false,
because ...

A Launch VehicleA Launch Vehicle
Digital Computer StoryDigital Computer Story

● Years-long search for codeYears-long search for code
● U. S. Space & Rocket Center archive told me:U. S. Space & Rocket Center archive told me:

● They had a copy of the software … FALSEThey had a copy of the software … FALSE
● Because of contract with IBM I couldn’t scan it.Because of contract with IBM I couldn’t scan it.
● But I could transcribe it to paper by hand!But I could transcribe it to paper by hand!

● IBM FSD software manager told me:IBM FSD software manager told me:
● Nobody could possibly have a copy … FALSENobody could possibly have a copy … FALSE
● Software was classified … FALSESoftware was classified … FALSE
● Was Was destroyeddestroyed after each mission … FALSE after each mission … FALSE
● Would be pointless to run in an emulator … ?Would be pointless to run in an emulator … ?

● Original developer turns into a White Knight!Original developer turns into a White Knight!

^
a few days before the 50th anniversary
of the Apollo 11 landing,
one of original LVDC developers
unexpectedly appeared and
gave me a printout of an LVDC assembly listing.
Admittedly, this was a buggy engineering
version of the code,
for an alternative mission profile
that never flew.
But nevertheless, it’s a big, fat printout
of real LVDC source code.
And no, it’s NOT marked as being classified.

A Launch VehicleA Launch Vehicle
Digital Computer StoryDigital Computer Story

● Years-long search for codeYears-long search for code
● U. S. Space & Rocket Center archive told me:U. S. Space & Rocket Center archive told me:

● They had a copy of the software … FALSEThey had a copy of the software … FALSE
● Because of contract with IBM I couldn’t scan it.Because of contract with IBM I couldn’t scan it.
● But I could transcribe it to paper by hand!But I could transcribe it to paper by hand!

● IBM FSD software manager told me:IBM FSD software manager told me:
● Nobody could possibly have a copy … FALSENobody could possibly have a copy … FALSE
● Software was classified … FALSESoftware was classified … FALSE
● Was Was destroyeddestroyed after each mission … FALSE after each mission … FALSE
● Would be pointless to run in an emulator … ?Would be pointless to run in an emulator … ?

● Original developer turns into a White Knight!Original developer turns into a White Knight!
● International Traffic in Arms Regulations (ITAR)International Traffic in Arms Regulations (ITAR)

● Is it legal to post publicly online???Is it legal to post publicly online???

^
But ... I’ve NOT posted the source code online,
and I WON’T give you a copy of it
unless you can prove to me that you’re
legally a “U. S. Person”.
Why?
You see, in theory a Saturn V could be used
as a launch vehicle to deliver a warhead ...
if you had a billion dollars to build the rocket
and a launch facility that could handle it.
Under that theory, “export” of the software
MAY be prohibited due to U. S. regulations
known as the International Traffic in Arms
Regulations, or ITAR.
I’ve had attorneys specializing in space law
looking at the question of whether or not ITAR
actually applies to LVDC source code or not.
They’ve been looking at it for 3 years.

Some Lessons LearnedSome Lessons Learned

1)1) There’s no such thing as There’s no such thing as tootoo much documentation. much documentation.
2)2) Nor too much code.Nor too much code.
3)3) More of the past may be recoverable than you think.More of the past may be recoverable than you think.
4)4) Unexpected help may be just around the corner.Unexpected help may be just around the corner.
5)5) Things that presumed experts tell you are not always correct.Things that presumed experts tell you are not always correct.
6)6) Human relations may be more helpful than online resources.Human relations may be more helpful than online resources.
7)7) Expect obstruction, indifference … and occasional cooperation.Expect obstruction, indifference … and occasional cooperation.

^
Finally ... here are a few takeaways ...
platitudes, really ... from my experiences
with the Virtual AGC Project.
If I had to choose just one,
I think I’d pick number 3 -
More software from the past
may be recoverable than you think.

Some Lessons LearnedSome Lessons Learned

1) There’s no such thing as There’s no such thing as tootoo much documentation. much documentation.
2)2) Nor too much code.Nor too much code.
3)3) More of the past may be recoverable than you think.More of the past may be recoverable than you think.
4)4) Unexpected help may be just around the corner.Unexpected help may be just around the corner.
5)5) Things that presumed experts tell you are not always correct.Things that presumed experts tell you are not always correct.
6)6) Human relations may be more helpful than online resources.Human relations may be more helpful than online resources.
7)7) Expect obstruction, indifference … and occasional cooperation.Expect obstruction, indifference … and occasional cooperation.

^
But never forget that software recovery
may ALSO be dependent on the extra material
you collect, even if it may not itself be
software or may at first seem irrelevant.

