Large-scale compression of
software source code

A. Boffa, P. Ferragina
(joint also with A. Guerra, G. Manzini, G. Vinciguerra)

A3 lab: Advanced Algorithms and Applications
Dipartimento di Informatica

UNIVERSITA DI PI1SA

e
Why data compression?

It provides rich dividends:
- Space saving, of course!

- ... and thus, reduced storage and transmission costs

- Energy saving: less servers involved

- Speed: not so obvious!

- better exploitation of the memory hierarchy

- reduced burning out of sectors in SSD disks
- N0 need to decompress the whole data, in some approaches

ACM R DIGITAL Google
LIBRARY I Faculty Research Awards

The edition of 2016
Brotli: A General-Purpose Data Compressor

Full Text: TIpDF . Get this Article

Brotli

Authors: Jyrki Alakuijala Google Research, Zirich, Switzerland .
Andrea Farruggia Universita di Pisa, Pisa, Italy
Paolo Ferragina Universita di Pisa, Pisa, Italy
Eugene Kliuchnikov Google Research, Ziirich, Switzerland
Robert Obryk Google Research, Ziirich, Switzerland

Zoltan Szabadka Google Research, Zirich, Switzerland
Lode Vandevenne Google Research, Ziirich, Switzerland

Published in:
- Journal
ACM Transactions on Information Systems (TOIS) TOIS Homepage archive

Volume 37 Issue 1, December 2018 |ssue-in-Progress
Article No. 4

ACM New York, NY, USA

table of contents dO0i>10.1145/3231935

UNIVERSITA DI P1sA

Searching Compressed Data’;

We were the first in 2000 to show how to search
compressed data, without decompressing all of them

Lee-Jun C.Wong Editor

Next
Generation

Sequencing

Translation to Clinical Diagnostics

@ Springer

Fast and accurate short read alignment with Burrows—Wheeler transform
H Li, R Durbin - bioinformatics, 2009 - academic.oup.com

Motivation: The enormous amount of short reads generated by the new DNA sequencing
technologies call for the development of fast and accurate read alignment programs. A first
generatignof hash ta ased methods has been developed, including MAQ, which is ...

Y UYJ Cited by 170190 Related articles All 34 versions $9

ML) Ultrafast and memory-efficient alignment of short DNA sequences to the
human genome
B Langmead, C Trapnell, M Pop... - Genome ..., 2009 - genomebiology.biomedcentral.com

Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence
reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie
to align mare than illion reads per CPU hour with a memory footprint of approximatel

Related articles All 54 versions 9

e

/

UNIVERSITA DI P1sA

N
The Software Heritage...

Size
As of today the archive already contains and keeps safe for you the following amount of objects:

Source files Commits

13.841.373.660 2.886.851.936

— 14.0B — 3.00B
~13.0B - 2.80B
- 12.0B - 2.60B
- 11.0B - 2.40B
- 10.08 - 2.208
L 9.00B - 2.00B
- 8.00B B 1'222
—7.00B ’
6 888 - 1.40B

> - 1.20B
[~5:008 - 1.008
- 3.008 - 600M
—2.00B - 400M
—1.00B I~ 200M

T T T T T T T T T 0.00 r T T T T T T T T 0.00

© © A ® > o ~ o o v) © A &) o o ~ o o »

X N ~ _ N < Q Q , Y N N ~ N N < Q Q N, Y

F 8§ & g 8K F & F 5 ® ¥ §F ¥ g N F 5 F ¥ F
¥ & o & ¥ o g g & o ¥ & . & b & - & ¥ &
N »~ ~ ~ ~ ~ ~ ~ N ~ ~ ~ ~ N ~ ~ ~ ~ ~ ~
(o] o [} (e} (o] (o] o (e} (o] o (e} () Q (o] (o) (o] [} Qo o (o]

Raw space (files) is about 1 PetaByte (10'° bytes)

How to approach the problem?

Squash Compression Benchmark

The Squash library is an abstraction layer for compression algorithms, making it trivial to switch between
them... or write a benchmark which tries them all, which is what you see here!

The Squash Compression Benchmark currently consists of 28 datasets, each of which is tested against 29

plugins containing 46 codecs at every compression level thex offer—the number varies by codec, but there are
235 in total, zielding 6,580 different settings. The benchmark is currently run on 9 different machines for a

current grand total of 59,220 configurations, and growing.

SKIP TO RESULTS (PRETTY PICTURES!) LEARN MORE ABOUT SQUASH ('

e
Three main families of

compressors

[1977] Lempel-Ziv parsing and its derivatives

= The classic approach, made famous by gzip
= A revamped interest around it: 7z, zstd, brotli, |zfse, ...

[1994] Burrows-Wheeler Transform and its derivatives

« Better entropy-bounds than gzip-like compressors ([bzip)
« But building a big BWT is costly and complicated...

[2000] Compressed (self-)indexes: offer space/decompress trade-offs

« FM-index, CSA, LZ-trie,... [Ferragina-Manzini, J.ACM ‘05]
= Inthe compressed space, they include text + (full-text) index
= Query/Decompression time is theoretically optimal

New compressors are based on
sophisticated ML models, but slow.

-
Something to be careful...

We are talking about compressing a:
¢/ collection of files of different types.
We have to apply a different compression scheme:

PPC: Permute + Partition + Compress

and study it in two experimental scenarios
« BackUp for the streaming access to compressed data

= Random access to single compressed files

Two main issues to deal with:

- Permuting based on which information ? filename, path, file type, content,...

- Partitioning based on which block size ? BackUp/Random access, compressor,..

Our experimental framework

The C and Python repositories in Github with most stars,
each consisting of about 25 Gb.

é redis N

NGiNX Brot
li ZStandar
d
Keras curl:/
o i Google Al
| O IR

O PyTorch . e NLP BERT

BackUp scenario: Python files =

COMPRESSION_RATIO(%)

NEML
39 ¢
61 o
33
Q
30
Q‘@ﬁ
27 1
24 -
7
21 1
g
18 -
m * Bl
15 a
100 101 150

COMPRESSION_SPEED(MiB/s)

On C files we get

about 6% vs 27%
compr. ratio of gzip

For random access, even with 4 MB
blocks, HYBRID is very robust by

loosing only about 1% in
compression ratio wrt Backup
scenario

—4— single;ﬁles+gzip
~@- single_files+zstd-22

~~ arbitrary_order+gzip
—¥— arbitrary_order+zstd-22
—— BWT+rl+rc

—g— git pack
—&— filename_sorted+zstd-22

—e— simhash_sorted+zstd-22
—#— simhash_clustered+zstd-22
—m— minhash clustered+zstd-22
— Simhash_graph+zstd-22

—& hybrid_type(mime+guesslang)_sorted+zstd-22
—2— hybrid_type(mime+guesslang) clustered+zstd-22

Random a- @e°§\®

N
(@q

o

C files = 25Gb

Use blocks of 4-16 MBs

- <— The compression loss is about 10%

" The compression loss is about 3%

rs The compression loss is about 1%

18 <b0
15 -
12 T *
[]
9 -
6 -
30 100

TIME_FILE_DECOMPRESSION(mSs)

arbitrary_order+blocks+gzippiock size = 4mia

arbitrary_order+blocks+9zippiock size = 16Mi8

arbitrary_order+blocks+zstd-22pjock size = 4mi8

b4

arbitrary_order+blocks+zstd-22pjock size = 16MiB

—a— filename_sorted+blocks+zstd-22piock size = amia
—a— filename_sorted+blocks+zstd-22piock size = 16Mi8

simhash_sorted+blocks+2zstd-22pock size = amis
simhash_sorted+blocks+2zstd-22pjack size = 16M8

simhash_clustered+blocks +2zstd-22pjock size = amis

i i

simhash_clustered+blocks +2zstd-22pjock size = 16MiB

hybrid_type(mime+guesslang)_sorted+blocks+zstd-22pjock size=amis
hybrid_type(mime+guesslang)_sorted+blocks+zstd-22pjock size=16MiB
hybrid_type(mime+guesslang)_clustered+blocks+zstd-22pjock size = 4mia

hybrid_type(mime+guesslang)_clustered+blocks+2zstd-22pjock size = 16MiB

csa_wt<wt_huff>, vector<31>
csa_wt<wt_huff>,r vector<63>
csa_wt<wt_huff>pr vector<127>

csa_sada

e
The moral...

We compared Data-aware-PPC versus Context-aware approaches (a la
GitPack), achieving the following results:
0 Our features subsume the "context" at a larger decompression speed than GitPack
0 They are robust with respect to block size

0 zstd is a good compressor: large window at 100MB/sec speed

Next, we aim at:

0 Investigating other orderings and partitionings

0 C++ coding & HPC is needed because a single machine would take about 3

months of computation (= 200 Tb space at about 4k euro).

UNIVERSITA DI PisA /

