
Large-scale compression of
software source code

A. Boffa, P. Ferragina
(joint also with A. Guerra, G. Manzini, G. Vinciguerra)

A3 lab: Advanced Algorithms and Applications
Dipartimento di Informatica

Why data compression?

It provides rich dividends:
•Space saving, of course!

• … and thus, reduced storage and transmission costs

•Energy saving: less servers involved

•Speed: not so obvious!

• better exploitation of the memory hierarchy

• reduced burning out of sectors in SSD disks
• no need to decompress the whole data, in some approaches

The edition of 2016

Searching Compressed Data

We were the first in 2000 to show how to search
compressed data, without decompressing all of them

FM-index

Bo
wT
i

e

BW
A

The Software Heritage...

Raw space (files) is about 1 PetaByte (1015 bytes)

How to approach the problem?

Three main families of
compressors
[1977] Lempel-Ziv parsing and its derivatives

■ The classic approach, made famous by gzip
■ A revamped interest around it: 7z, zstd, brotli, lzfse, …

[1994] Burrows-Wheeler Transform and its derivatives

■ Better entropy-bounds than gzip-like compressors (🡪 bzip)
■ But building a big BWT is costly and complicated…

[2000] Compressed (self-)indexes: offer space/decompress trade-offs

■ FM-index, CSA, LZ-trie,… [Ferragina-Manzini, J.ACM ‘05]

■ In the compressed space, they include text + (full-text) index
■ Query/Decompression time is theoretically optimal

New compressors are based on

sophisticated ML models, but slow.

Something to be careful…
We are talking about compressing a:
✔ collection of files of different types.

We have to apply a different compression scheme:

PPC: Permute + Partition + Compress

and study it in two experimental scenarios

■ BackUp for the streaming access to compressed data

■ Random access to single compressed files

Two main issues to deal with:
- Permuting based on which information ? filename, path, file type, content,…

- Partitioning based on which block size ? BackUp/Random access, compressor,..

Our experimental framework

The C and Python repositories in Github with most stars,
each consisting of about 25 Gb.

Brot
li ZStandar

d

BackUp scenario: Python files ≅
25Gb

On C files we get
about 6% vs 27%

compr. ratio of gzip

150 450

simhash_graph+zstd-22

For random access, even with 4 MB
blocks, HYBRID is very robust by

loosing only about 1% in
compression ratio wrt Backup

scenario

Random access: C files ≅ 25Gb

Use blocks of 4-16 MBs

The compression loss is about 1%

The compression loss is about 10%

The compression loss is about 3%

The difference on Pyth
on betw

een hyb
rid

and fil
enam

e_so
rte

d is
 neglig

ible

The moral...
We compared Data-aware-PPC versus Context-aware approaches (à la

GitPack), achieving the following results:

� Our features subsume the "context" at a larger decompression speed than GitPack

� They are robust with respect to block size

� zstd is a good compressor: large window at 100MB/sec speed

Next, we aim at:

� Investigating other orderings and partitionings

� C++ coding & HPC is needed because a single machine would take about 3

months of computation (≅ 200 Tb space at about 4k euro).

It’s time to try it on the whole SH

